Skip to main content
Top

2017 | OriginalPaper | Chapter

Quantitative Structure-Epigenetic Activity Relationships

Authors : Mario Omar García-Sánchez, Maykel Cruz-Monteagudo, José L. Medina-Franco

Published in: Advances in QSAR Modeling

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The relevance of epigenetic drug discovery has increased during the past few years as revealed by the augmenting number of related publications and the amount of structure-epigenetic activity data in compound databases. This chapter discusses the current status of epigenetic target-based therapies. It is also analyzed the progress of quantitative structure-activity relationship (QSAR) models developed for compound databases screened with epigenetic targets. A special emphasis is made on compounds directed to inhibitors of DNA methyltransferases, one of the first epigenetic target families associated with therapeutic potential. Novel approaches applied to develop models for inhibitors of bromodomains, other epigenetic target families with high relevance in modern drug discovery programs, are also discussed. The chapter analyses epigenetic activity landscape modeling, activity cliffs, and activity cliff generators and their relevance to develop QSAR models. Computational methods applied to elucidate Quantitative Structure-Epigenetic Activity Relationships are in line with the increasing and developing research area of Epi-informatics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agrafiotis, D. K., Wiener, J. J., Skalkin, A., & Kolpak, J. (2011). Single R-group polymorphisms (SRPs) and R-cliffs: An intuitive framework for analyzing and visualizing activity cliffs in a single analog series. Journal of Chemical Information and Modeling, 51, 31–1122.CrossRef Agrafiotis, D. K., Wiener, J. J., Skalkin, A., & Kolpak, J. (2011). Single R-group polymorphisms (SRPs) and R-cliffs: An intuitive framework for analyzing and visualizing activity cliffs in a single analog series. Journal of Chemical Information and Modeling, 51, 31–1122.CrossRef
go back to reference Aguayo-Ortiz, R., Perez-Villanueva, J., Hernandez-Campos, A., Castillo, R., Meurice, N., & Medina-Franco, J. L. (2014). Chemoinformatic characterization of activity and selectivity switches of antiprotozoal compounds. Future Medicinal Chemistry, 6, 281–294.CrossRef Aguayo-Ortiz, R., Perez-Villanueva, J., Hernandez-Campos, A., Castillo, R., Meurice, N., & Medina-Franco, J. L. (2014). Chemoinformatic characterization of activity and selectivity switches of antiprotozoal compounds. Future Medicinal Chemistry, 6, 281–294.CrossRef
go back to reference Aguiar-Pulido, V., Gestal, M., Cruz-Monteagudo, M., Rabunal, J. R., Dorado, J., & Munteanu, C. R. (2013). Evolutionary computation and QSAR research. Current Computer-Aided Drug Design, 9, 25–206.CrossRef Aguiar-Pulido, V., Gestal, M., Cruz-Monteagudo, M., Rabunal, J. R., Dorado, J., & Munteanu, C. R. (2013). Evolutionary computation and QSAR research. Current Computer-Aided Drug Design, 9, 25–206.CrossRef
go back to reference Alam, F., Islam, M. A., Gan, S. H., Mohamed, M. & Sasongko, T. H. (2016). DNA methylation: An epigenetic insight into type 2 diabetes mellitus. Current Pharmaceutical Design. Alam, F., Islam, M. A., Gan, S. H., Mohamed, M. & Sasongko, T. H. (2016). DNA methylation: An epigenetic insight into type 2 diabetes mellitus. Current Pharmaceutical Design.
go back to reference Arguelles, A. O., Meruvu, S., Bowman, J. D., & Choudhury, M. (2016). Are epigenetic drugs for diabetes and obesity at our door step? Drug Discovery Today, 21, 499–509.CrossRef Arguelles, A. O., Meruvu, S., Bowman, J. D., & Choudhury, M. (2016). Are epigenetic drugs for diabetes and obesity at our door step? Drug Discovery Today, 21, 499–509.CrossRef
go back to reference Bajorath, J. (2012). Modeling of activity landscapes for drug discovery. Expert Opinion on Drug Discovery, 7, 463–473.CrossRef Bajorath, J. (2012). Modeling of activity landscapes for drug discovery. Expert Opinion on Drug Discovery, 7, 463–473.CrossRef
go back to reference Bajorath, J., Peltason, L., Wawer, M., Guha, R., Lajiness, M. S., & Van Drie, J. H. (2009). Navigating structure-activity landscapes. Drug Discovery Today, 14, 698–705.CrossRef Bajorath, J., Peltason, L., Wawer, M., Guha, R., Lajiness, M. S., & Van Drie, J. H. (2009). Navigating structure-activity landscapes. Drug Discovery Today, 14, 698–705.CrossRef
go back to reference Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational definition of epigenetics. Genes & Development, 23, 781–783.CrossRef Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational definition of epigenetics. Genes & Development, 23, 781–783.CrossRef
go back to reference Borg, I. & Groenen, P. J. F. (2005)Modern Multidimensional Scaling. Theory and Applications, New York, NY, Springer-Verlag. Borg, I. & Groenen, P. J. F. (2005)Modern Multidimensional Scaling. Theory and Applications, New York, NY, Springer-Verlag.
go back to reference Brewerton, S. C. (2008). The use of protein-ligand interaction fingerprints in docking. Current Opinion Drug Discovery Development, 11, 356–364. Brewerton, S. C. (2008). The use of protein-ligand interaction fingerprints in docking. Current Opinion Drug Discovery Development, 11, 356–364.
go back to reference Byeon, B., Rasheed, K. & Doshi, P. (2008) Enhancing the quality of noisy training data using a genetic algorithm and prototype selection. The 2008 International Conference on Artificial Intelligence (ICAI´08). Monte Carlo Resort, Las Vegas, Nevada, USA: IEEE Publisher. Byeon, B., Rasheed, K. & Doshi, P. (2008) Enhancing the quality of noisy training data using a genetic algorithm and prototype selection. The 2008 International Conference on Artificial Intelligence (ICAI´08). Monte Carlo Resort, Las Vegas, Nevada, USA: IEEE Publisher.
go back to reference Castillo-Gonzalez, D., Mergny, J. L., De Rache, A., Perez-Machado, G., Cabrera-Perez, M. A., Nicolotti, O., et al. (2015). Harmonization of QSAR best practices and molecular docking provides an efficient virtual screening tool for discovering new G-quadruplex ligands. Journal of Chemical Information and Modeling, 55, 110–2094.CrossRef Castillo-Gonzalez, D., Mergny, J. L., De Rache, A., Perez-Machado, G., Cabrera-Perez, M. A., Nicolotti, O., et al. (2015). Harmonization of QSAR best practices and molecular docking provides an efficient virtual screening tool for discovering new G-quadruplex ligands. Journal of Chemical Information and Modeling, 55, 110–2094.CrossRef
go back to reference Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, Ii, Cronin, M., et al. (2014). QSAR modeling: Where have you been? Where are you going to? Journal of Medicinal Chemistry, 57, 4977–5010.CrossRef Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, Ii, Cronin, M., et al. (2014). QSAR modeling: Where have you been? Where are you going to? Journal of Medicinal Chemistry, 57, 4977–5010.CrossRef
go back to reference Choubey, S. K., Mariadasse, R., Rajendran, S. & Jeyakanthan, J. (2016) Identification of novel histone deacetylase 1 inhibitors by combined pharmacophore modeling, 3D-QSAR analysis, in silico screening and density functional theory (DFT) approaches. Journal of Molecular Structure. Choubey, S. K., Mariadasse, R., Rajendran, S. & Jeyakanthan, J. (2016) Identification of novel histone deacetylase 1 inhibitors by combined pharmacophore modeling, 3D-QSAR analysis, in silico screening and density functional theory (DFT) approaches. Journal of Molecular Structure.
go back to reference Cressie, N. (1993). Statistics for spatial data. NY, New York: Wiley. Cressie, N. (1993). Statistics for spatial data. NY, New York: Wiley.
go back to reference Cruz-Monteagudo, M., Medina-Franco, J. L., Perez-Castillo, Y., Nicolotti, O., Cordeiro, M. N., & Borges, F. (2014). Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde? Drug Discovery Today, 19, 80–1069.CrossRef Cruz-Monteagudo, M., Medina-Franco, J. L., Perez-Castillo, Y., Nicolotti, O., Cordeiro, M. N., & Borges, F. (2014). Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde? Drug Discovery Today, 19, 80–1069.CrossRef
go back to reference Cruz-Monteagudo, M., Medina-Franco, J. L., Perera-Sardina, Y., Borges, F., Tejera, E., Paz, Y. M. C. et al. (2016). Probing the hypothesis of SAR continuity restoration by the removal of activity cliffs generators in QSAR. Current Pharmaceutical Design. Cruz-Monteagudo, M., Medina-Franco, J. L., Perera-Sardina, Y., Borges, F., Tejera, E., Paz, Y. M. C. et al. (2016). Probing the hypothesis of SAR continuity restoration by the removal of activity cliffs generators in QSAR. Current Pharmaceutical Design.
go back to reference Desaphy, J., Raimbaud, E., Ducrot, P., & Rognan, D. (2013). Encoding protein-ligand interaction patterns in fingerprints and graphs. Journal of Chemical Information and Modeling, 53, 623–637.CrossRef Desaphy, J., Raimbaud, E., Ducrot, P., & Rognan, D. (2013). Encoding protein-ligand interaction patterns in fingerprints and graphs. Journal of Chemical Information and Modeling, 53, 623–637.CrossRef
go back to reference Dimova, D., Wawer, M., Wassermann, A. M., & Bajorath, J. (2011). Design of multitarget activity landscapes that capture hierarchical activity cliff distributions. Journal of Chemical Information and Modeling, 51, 258–266.CrossRef Dimova, D., Wawer, M., Wassermann, A. M., & Bajorath, J. (2011). Design of multitarget activity landscapes that capture hierarchical activity cliff distributions. Journal of Chemical Information and Modeling, 51, 258–266.CrossRef
go back to reference Dimova, D., Hu, Y., & Bajorath, J. (2012). Matched molecular pair analysis of small molecule microarray data identifies promiscuity cliffs and reveals molecular origins of extreme compound promiscuity. Journal of Medicinal Chemistry, 55, 10220–10228.CrossRef Dimova, D., Hu, Y., & Bajorath, J. (2012). Matched molecular pair analysis of small molecule microarray data identifies promiscuity cliffs and reveals molecular origins of extreme compound promiscuity. Journal of Medicinal Chemistry, 55, 10220–10228.CrossRef
go back to reference Dimova, D., Heikamp, K., Stumpfe, D., & Bajorath, J. (2013). Do medicinal chemists learn from activity cliffs? A systematic evaluation of cliff progression in evolving compound data sets. Journal of Medicinal Chemistry, 56, 45–3339.CrossRef Dimova, D., Heikamp, K., Stumpfe, D., & Bajorath, J. (2013). Do medicinal chemists learn from activity cliffs? A systematic evaluation of cliff progression in evolving compound data sets. Journal of Medicinal Chemistry, 56, 45–3339.CrossRef
go back to reference Dueñas-González, A., Jesús Naveja, J. & Medina-Franco, J. L. (2016). Chapter 1—Introduction of epigenetic targets in drug discovery and current status of epi-drugs and epi-probes. Epi-informatics. Boston: Academic Press. Dueñas-González, A., Jesús Naveja, J. & Medina-Franco, J. L. (2016). Chapter 1—Introduction of epigenetic targets in drug discovery and current status of epi-drugs and epi-probes. Epi-informatics. Boston: Academic Press.
go back to reference Durant, J. L., Leland, B. A., Henry, D. R., & Nourse, J. G. (2002). Reoptimization of MDL keys for use in drug discovery. Journal of Chemical Information and Computer Sciences, 42, 1273–1280.CrossRef Durant, J. L., Leland, B. A., Henry, D. R., & Nourse, J. G. (2002). Reoptimization of MDL keys for use in drug discovery. Journal of Chemical Information and Computer Sciences, 42, 1273–1280.CrossRef
go back to reference Fernandez-de Gortari, E., & Medina-Franco, J. L. (2015). Epigenetic relevant chemical space: a chemoinformatic characterization of inhibitors of DNA methyltransferases. RSC Advances, 5, 87465–87476.CrossRef Fernandez-de Gortari, E., & Medina-Franco, J. L. (2015). Epigenetic relevant chemical space: a chemoinformatic characterization of inhibitors of DNA methyltransferases. RSC Advances, 5, 87465–87476.CrossRef
go back to reference Fourches, D., Barnes, J. C., Day, N. C., Bradley, P., Reed, J. Z., & Tropsha, A. (2010a). Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species. Chemical Research in Toxicology, 23, 83–171.CrossRef Fourches, D., Barnes, J. C., Day, N. C., Bradley, P., Reed, J. Z., & Tropsha, A. (2010a). Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species. Chemical Research in Toxicology, 23, 83–171.CrossRef
go back to reference Fourches, D., Muratov, E., & Tropsha, A. (2010b). Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research. Journal of Chemical Information and Modeling, 50, 1189–1204.CrossRef Fourches, D., Muratov, E., & Tropsha, A. (2010b). Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research. Journal of Chemical Information and Modeling, 50, 1189–1204.CrossRef
go back to reference Fourches, D., Muratov, E. & Tropsha, A. (2016). Trust, but Verify II: A practical guide to chemogenomics data curation. Journal of Chemical Information. Fourches, D., Muratov, E. & Tropsha, A. (2016). Trust, but Verify II: A practical guide to chemogenomics data curation. Journal of Chemical Information.
go back to reference Galdeano, C. & Ciulli, A. (2016). Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology. Future Medicinal Chemistry. Galdeano, C. & Ciulli, A. (2016). Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology. Future Medicinal Chemistry.
go back to reference Golbraikh, A., Muratov, E., Fourches, D., & Tropsha, A. (2014). Data set modelability by QSAR. Journal of Chemical Information and Modeling, 54, 1–4.CrossRef Golbraikh, A., Muratov, E., Fourches, D., & Tropsha, A. (2014). Data set modelability by QSAR. Journal of Chemical Information and Modeling, 54, 1–4.CrossRef
go back to reference Guha, R. (2010) What makes a good structure activity landscape? Abstr Papers American Chemical Society. Washington, DC: American Chemical Society. Guha, R. (2010) What makes a good structure activity landscape? Abstr Papers American Chemical Society. Washington, DC: American Chemical Society.
go back to reference Guha, R. (2011). The ups and downs of structure-activity landscapes. Methods Molecular Biology, 672, 101–117.CrossRef Guha, R. (2011). The ups and downs of structure-activity landscapes. Methods Molecular Biology, 672, 101–117.CrossRef
go back to reference Guha, R. (2012a). Exploring structure-activity data using the landscape paradigm. Wiley Interdisciplinary Reviews: Computer Molecular Science, 2, 829–841. Guha, R. (2012a). Exploring structure-activity data using the landscape paradigm. Wiley Interdisciplinary Reviews: Computer Molecular Science, 2, 829–841.
go back to reference Guha, R. (2012b). Exploring structure–activity data using the landscape paradigm. Wiley Interdisciplinary Reviews: Computer Molecular Science, 2, 829–841. Guha, R. (2012b). Exploring structure–activity data using the landscape paradigm. Wiley Interdisciplinary Reviews: Computer Molecular Science, 2, 829–841.
go back to reference Guha, R. (2012c). Exploring uncharted territories: Predicting activity cliffs in structure-activity landscapes. Journal of Chemical Information and Modeling, 52, 2181–2191.CrossRef Guha, R. (2012c). Exploring uncharted territories: Predicting activity cliffs in structure-activity landscapes. Journal of Chemical Information and Modeling, 52, 2181–2191.CrossRef
go back to reference Guha, R. & Medina-Franco, J. L. (2014) On the validity versus utility of activity landscapes: Are all activity cliffs statistically significant? Journal of Cheminformatics 6, 11. Guha, R. & Medina-Franco, J. L. (2014) On the validity versus utility of activity landscapes: Are all activity cliffs statistically significant? Journal of Cheminformatics 6, 11.
go back to reference Guha, R., & Van Drie, J. H. (2008a). Assessing how well a modeling protocol captures a structure-activity landscape. Journal of Chemical Information and Modeling, 48, 1716–1728.CrossRef Guha, R., & Van Drie, J. H. (2008a). Assessing how well a modeling protocol captures a structure-activity landscape. Journal of Chemical Information and Modeling, 48, 1716–1728.CrossRef
go back to reference Guha, R., & Van Drie, J. H. (2008b). Structure–Activity landscape index: identifying and quantifying activity cliffs. Journal of Chemical Information and Modeling, 48, 58–646. Guha, R., & Van Drie, J. H. (2008b). Structure–Activity landscape index: identifying and quantifying activity cliffs. Journal of Chemical Information and Modeling, 48, 58–646.
go back to reference Hu, Y., & Bajorath, J. (2010). Molecular scaffolds with high propensity to form multi-target activity cliffs. Journal of Chemical Information and Modeling, 50, 500–510.CrossRef Hu, Y., & Bajorath, J. (2010). Molecular scaffolds with high propensity to form multi-target activity cliffs. Journal of Chemical Information and Modeling, 50, 500–510.CrossRef
go back to reference Hu, Y., & Bajorath, J. (2012). Exploration of 3D activity cliffs on the basis of compound binding modes and comparison of 2D and 3D cliffs. Journal of Chemical Information and Modeling, 52, 670–677.CrossRef Hu, Y., & Bajorath, J. (2012). Exploration of 3D activity cliffs on the basis of compound binding modes and comparison of 2D and 3D cliffs. Journal of Chemical Information and Modeling, 52, 670–677.CrossRef
go back to reference Hu, X., Hu, Y., Vogt, M., Stumpfe, D., & Bajorath, J. (2012a). MMP-cliffs: Systematic identification of activity cliffs on the basis of matched molecular pairs. Journal of Chemical Information and Modeling, 52, 1138–1145.CrossRef Hu, X., Hu, Y., Vogt, M., Stumpfe, D., & Bajorath, J. (2012a). MMP-cliffs: Systematic identification of activity cliffs on the basis of matched molecular pairs. Journal of Chemical Information and Modeling, 52, 1138–1145.CrossRef
go back to reference Hu, Y., Furtmann, N., Gütschow, M., & Bajorath, J. (2012b). Systematic identification and classification of three-dimensional activity cliffs. Journal of Chemical Information and Modeling, 52, 1490–1498.CrossRef Hu, Y., Furtmann, N., Gütschow, M., & Bajorath, J. (2012b). Systematic identification and classification of three-dimensional activity cliffs. Journal of Chemical Information and Modeling, 52, 1490–1498.CrossRef
go back to reference Hu, Y., Stumpfe, D. & Bajorath, J. (2013). Advancing the activity cliff concept. F1000Research. 2, 199. Hu, Y., Stumpfe, D. & Bajorath, J. (2013). Advancing the activity cliff concept. F1000Research. 2, 199.
go back to reference Huang, Z., Jiang, H., Liu, X., Chen, Y., Wong, J., Wang, Q., et al. (2012). HEMD: An integrated tool of human epigenetic enzymes and chemical modulators for therapeutics. PLoS ONE, 7, e39917.CrossRef Huang, Z., Jiang, H., Liu, X., Chen, Y., Wong, J., Wang, Q., et al. (2012). HEMD: An integrated tool of human epigenetic enzymes and chemical modulators for therapeutics. PLoS ONE, 7, e39917.CrossRef
go back to reference Ivanciuc, O. (2009). Drug design with machine learning. In: R.A. Meyers (Ed.), Encyclopedia of complexity and system science. New York: Springer-Verlag. Ivanciuc, O. (2009). Drug design with machine learning. In: R.A. Meyers (Ed.), Encyclopedia of complexity and system science. New York: Springer-Verlag.
go back to reference Iyer, P., & Bajorath, J. (2011). Representation of multi-target activity landscapes through target pair-based compound encoding in self-organizing maps. Chemical Biology & Drug Design, 78, 739–905.CrossRef Iyer, P., & Bajorath, J. (2011). Representation of multi-target activity landscapes through target pair-based compound encoding in self-organizing maps. Chemical Biology & Drug Design, 78, 739–905.CrossRef
go back to reference Iyer, P., Hu, Y., & Bajorath, J. (2011). SAR monitoring of evolving compound data sets using activity landscapes. Journal of Chemical Information and Modeling, 51, 40–532.CrossRef Iyer, P., Hu, Y., & Bajorath, J. (2011). SAR monitoring of evolving compound data sets using activity landscapes. Journal of Chemical Information and Modeling, 51, 40–532.CrossRef
go back to reference Jaccard, P. (1901). Etude Comparative de la Distribution Florale dans une Portion des Alpes et des Jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579. Jaccard, P. (1901). Etude Comparative de la Distribution Florale dans une Portion des Alpes et des Jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579.
go back to reference Japkowicz, N. (2000a). The class imbalance problem: Significance and strategies. International Conference on Artificial Intelligence (ICAI´2000). Japkowicz, N. (2000a). The class imbalance problem: Significance and strategies. International Conference on Artificial Intelligence (ICAI´2000).
go back to reference Japkowicz, N. (2000b). Learning from imbalanced data sets: A comparison of various solutions. In R. Holte., N. Japkowicz, C. Ling & S. Matwin (Eds.), AAAI´2000 workshop on learning from imbalanced data sets. AAAI Press. Japkowicz, N. (2000b). Learning from imbalanced data sets: A comparison of various solutions. In R. Holte., N. Japkowicz, C. Ling & S. Matwin (Eds.), AAAI´2000 workshop on learning from imbalanced data sets. AAAI Press.
go back to reference Johnson, M. A., & Maggiora, G. M. (1990). Concepts and applications of molecular similarity. New York: Wiley. Johnson, M. A., & Maggiora, G. M. (1990). Concepts and applications of molecular similarity. New York: Wiley.
go back to reference Kenny, P. W. & Sadowski, J. (2004). Structure modification in chemical databases. In T. I. Oprea (Ed.), Chemoinformatics in drug discovery. Weinheim, Germany: Wiley-VCH. Kenny, P. W. & Sadowski, J. (2004). Structure modification in chemical databases. In T. I. Oprea (Ed.), Chemoinformatics in drug discovery. Weinheim, Germany: Wiley-VCH.
go back to reference Kubinyi, H. (2002). From narcosis to hyperspace: The history of QSAR. Quantitative Structure-Activity Relationships, 21, 348–356.CrossRef Kubinyi, H. (2002). From narcosis to hyperspace: The history of QSAR. Quantitative Structure-Activity Relationships, 21, 348–356.CrossRef
go back to reference Kuncheva, L. I. (2004). Combining pattern classifiers, methods and algorithms. New York, NY: Wiley Interscience.CrossRef Kuncheva, L. I. (2004). Combining pattern classifiers, methods and algorithms. New York, NY: Wiley Interscience.CrossRef
go back to reference Liu, T. Q., Lin, Y. M., Wen, X., Jorissen, R. N., & Gilson, M. K. (2007). BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Research, 35, D198–D201.CrossRef Liu, T. Q., Lin, Y. M., Wen, X., Jorissen, R. N., & Gilson, M. K. (2007). BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Research, 35, D198–D201.CrossRef
go back to reference Liu, L., Zhen, X. T., Denton, E., Marsden, B. D., & Schapira, M. (2012). ChromoHub: A data hub for navigators of chromatin-mediated signalling. Bioinformatics, 28, 2205–2206.CrossRef Liu, L., Zhen, X. T., Denton, E., Marsden, B. D., & Schapira, M. (2012). ChromoHub: A data hub for navigators of chromatin-mediated signalling. Bioinformatics, 28, 2205–2206.CrossRef
go back to reference Lounkine, E., Wawer, M., Wassermann, A. M., & Bajorath, J. (2009). SARANEA: A freely available program to mine structure–activity and structure–selectivity relationship information in compound data sets. Journal of Chemical Information and Modeling, 50, 68–78.CrossRef Lounkine, E., Wawer, M., Wassermann, A. M., & Bajorath, J. (2009). SARANEA: A freely available program to mine structure–activity and structure–selectivity relationship information in compound data sets. Journal of Chemical Information and Modeling, 50, 68–78.CrossRef
go back to reference Maggiora, G. M. (2006). On outliers and activity cliffs-why QSAR often disappoints. Journal of Chemical Information and Modeling, 46, 1535.CrossRef Maggiora, G. M. (2006). On outliers and activity cliffs-why QSAR often disappoints. Journal of Chemical Information and Modeling, 46, 1535.CrossRef
go back to reference Maldonado-Rojas, W., Olivero-Verbel, J., & Marrero-Ponce, Y. (2015). Computational fishing of new dna methyltransferase inhibitors from natural products. Journal of Molecular Graphics and Modelling, 60, 43–54.CrossRef Maldonado-Rojas, W., Olivero-Verbel, J., & Marrero-Ponce, Y. (2015). Computational fishing of new dna methyltransferase inhibitors from natural products. Journal of Molecular Graphics and Modelling, 60, 43–54.CrossRef
go back to reference Martinez-Mayorga, K., & Medina-Franco, J. L. (Eds.). (2014). Foodinformatics: Applications of chemical information to food chemistry. New York: Springer. Martinez-Mayorga, K., & Medina-Franco, J. L. (Eds.). (2014). Foodinformatics: Applications of chemical information to food chemistry. New York: Springer.
go back to reference Martinez-Mayorga, K., Peppard, T. L., Lopez-Vallejo, F., Yongye, A. B., & Medina-Franco, J. L. (2013). Systematic mining of generally recognized as safe (GRAS) flavor chemicals for bioactive compounds. Journal of Agriculture and Food Chemistry, 61, 7507–7514.CrossRef Martinez-Mayorga, K., Peppard, T. L., Lopez-Vallejo, F., Yongye, A. B., & Medina-Franco, J. L. (2013). Systematic mining of generally recognized as safe (GRAS) flavor chemicals for bioactive compounds. Journal of Agriculture and Food Chemistry, 61, 7507–7514.CrossRef
go back to reference Martinez-Mayorga, K., Peppard, L. T., Ramírez-Hernández, I. A., Terrazas-Álvarez, E. D. & Medina-Franco, L. J. (2014). Chemoinformatics analysis and structural similarity studies of food-related databases. In K. Martinez-Mayorga., L. J. Medina-Franco (Eds.), Foodinformatics: Applications of chemical information to food chemistry. New York: Springer. Martinez-Mayorga, K., Peppard, L. T., Ramírez-Hernández, I. A., Terrazas-Álvarez, E. D. & Medina-Franco, L. J. (2014). Chemoinformatics analysis and structural similarity studies of food-related databases. In K. Martinez-Mayorga., L. J. Medina-Franco (Eds.), Foodinformatics: Applications of chemical information to food chemistry. New York: Springer.
go back to reference Medina-Franco, J. L. (2012). Scanning structure-activity relationships with structure-activity similarity and related maps: From consensus activity cliffs to selectivity switches. Journal of Chemical Information and Modeling, 52, 2485–2493.CrossRef Medina-Franco, J. L. (2012). Scanning structure-activity relationships with structure-activity similarity and related maps: From consensus activity cliffs to selectivity switches. Journal of Chemical Information and Modeling, 52, 2485–2493.CrossRef
go back to reference Medina-Franco, J. L. (2013). Activity cliffs: Facts or artifacts? Chemical Biology and Drug Design, 81, 553–556.CrossRef Medina-Franco, J. L. (2013). Activity cliffs: Facts or artifacts? Chemical Biology and Drug Design, 81, 553–556.CrossRef
go back to reference Medina-Franco, J. L. & Maggiora, G. M. (2014). Molecular similarity analysis. In J. Bajorath (Ed.), Chemoinformatics for drug discovery. Wiley. Medina-Franco, J. L. & Maggiora, G. M. (2014). Molecular similarity analysis. In J. Bajorath (Ed.), Chemoinformatics for drug discovery. Wiley.
go back to reference Medina-Franco, J. L., & Waddell, J. (2012). Towards the bioassay activity landscape modeling in compound databases. Journal of the Mexican Chemical Society, 56, 163–168. Medina-Franco, J. L., & Waddell, J. (2012). Towards the bioassay activity landscape modeling in compound databases. Journal of the Mexican Chemical Society, 56, 163–168.
go back to reference Medina-Franco, J. L. & Yoo, J. (2016). Chapter 15—The road ahead of the epi-informatics field. Epi-Informatics. Boston: Academic Press. Medina-Franco, J. L. & Yoo, J. (2016). Chapter 15—The road ahead of the epi-informatics field. Epi-Informatics. Boston: Academic Press.
go back to reference Medina-Franco, J. L., Martinez-Mayorga, K., Bender, A., Marin, R. M., Giulianotti, M. A., Pinilla, C., et al. (2009). Characterization of activity landscapes using 2D and 3D similarity methods: Consensus activity cliffs. Journal of Chemical Information and Modeling, 49, 91–477.CrossRef Medina-Franco, J. L., Martinez-Mayorga, K., Bender, A., Marin, R. M., Giulianotti, M. A., Pinilla, C., et al. (2009). Characterization of activity landscapes using 2D and 3D similarity methods: Consensus activity cliffs. Journal of Chemical Information and Modeling, 49, 91–477.CrossRef
go back to reference Medina-Franco, J. L., Edwards, B. S., Pinilla, C., Appel, J. R., Giulianotti, M. A., Santos, R. G., et al. (2013). Rapid scanning structure-activity relationships in combinatorial data sets: Identification of activity switches. Journal of Chemical Information and Modeling, 53, 1475–1485.CrossRef Medina-Franco, J. L., Edwards, B. S., Pinilla, C., Appel, J. R., Giulianotti, M. A., Santos, R. G., et al. (2013). Rapid scanning structure-activity relationships in combinatorial data sets: Identification of activity switches. Journal of Chemical Information and Modeling, 53, 1475–1485.CrossRef
go back to reference Medina-Franco, J. L., Méndez-Lucio, O., & Martinez-Mayorga, K. (2014a). Chapter one—The interplay between molecular modeling and chemoinformatics to characterize protein-ligand and protein-protein interactions landscapes for drug discovery. Advances in Protein Chemistry and Structural Biology, 96, 1–37.CrossRef Medina-Franco, J. L., Méndez-Lucio, O., & Martinez-Mayorga, K. (2014a). Chapter one—The interplay between molecular modeling and chemoinformatics to characterize protein-ligand and protein-protein interactions landscapes for drug discovery. Advances in Protein Chemistry and Structural Biology, 96, 1–37.CrossRef
go back to reference Medina-Franco, J. L., Méndez-Lucio, O., & Yoo, J. (2014b). Rationalization of activity cliffs of a sulfonamide inhibitor of DNA methyltransferases with induced-fit docking. International Journal of Molecular Sciences, 15, 3253–3261.CrossRef Medina-Franco, J. L., Méndez-Lucio, O., & Yoo, J. (2014b). Rationalization of activity cliffs of a sulfonamide inhibitor of DNA methyltransferases with induced-fit docking. International Journal of Molecular Sciences, 15, 3253–3261.CrossRef
go back to reference Medina-Franco, J. L., Navarrete-Vazquez, G., & Mendez-Lucio, O. (2015a). Activity and property landscape modeling is at the interface of chemoinformatics and medicinal chemistry. Future Medicinal Chemistry, 7, 211–1197.CrossRef Medina-Franco, J. L., Navarrete-Vazquez, G., & Mendez-Lucio, O. (2015a). Activity and property landscape modeling is at the interface of chemoinformatics and medicinal chemistry. Future Medicinal Chemistry, 7, 211–1197.CrossRef
go back to reference Medina-Franco, J. L., Navarrete-Vázquez, G., & Méndez-Lucio, O. (2015b). Property landscape modeling is at the interface of chemoinformatics and experimental sciences. Future Medicinal Chemistry, 7, 1197–1211.CrossRef Medina-Franco, J. L., Navarrete-Vázquez, G., & Méndez-Lucio, O. (2015b). Property landscape modeling is at the interface of chemoinformatics and experimental sciences. Future Medicinal Chemistry, 7, 1197–1211.CrossRef
go back to reference Méndez-Lucio, O. (2016). Chapter 13—Computational structure–activity relationship studies of epigenetic target inhibitors. In J. L. Medina-Franco (Ed.), Epi-Informatics. Boston: Academic Press. Méndez-Lucio, O. (2016). Chapter 13—Computational structure–activity relationship studies of epigenetic target inhibitors. In J. L. Medina-Franco (Ed.), Epi-Informatics. Boston: Academic Press.
go back to reference Mendez-Lucio, O., Perez-Villanueva, J., Castillo, R., & Medina-Franco, J. L. (2012a). Activity landscape modeling of PPAR ligands with dual-activity difference maps. Bioorganic and Medicinal Chemistry, 20, 32–3523.CrossRef Mendez-Lucio, O., Perez-Villanueva, J., Castillo, R., & Medina-Franco, J. L. (2012a). Activity landscape modeling of PPAR ligands with dual-activity difference maps. Bioorganic and Medicinal Chemistry, 20, 32–3523.CrossRef
go back to reference Mendez-Lucio, O., Perez-Villanueva, J., Castillo, R., & Medina-Franco, J. L. (2012b). Identifying activity cliff generators of PPAR ligands using SAS maps. Molecular Informatics, 31, 837–846.CrossRef Mendez-Lucio, O., Perez-Villanueva, J., Castillo, R., & Medina-Franco, J. L. (2012b). Identifying activity cliff generators of PPAR ligands using SAS maps. Molecular Informatics, 31, 837–846.CrossRef
go back to reference Méndez-Lucio, O., Tran, J., Medina-Franco, J. L., Meurice, N., & Muller, M. (2014). Towards drug repurposing in epigenetics: Olsalazine as a novel hypomethylating compound active in a cellular context. ChemMedChem, 9, 560–565.CrossRef Méndez-Lucio, O., Tran, J., Medina-Franco, J. L., Meurice, N., & Muller, M. (2014). Towards drug repurposing in epigenetics: Olsalazine as a novel hypomethylating compound active in a cellular context. ChemMedChem, 9, 560–565.CrossRef
go back to reference Méndez-Lucio, O., Kooistra, A. J., Graaf, C. D., Bender, A., & Medina-Franco, J. L. (2015). Analysing multitarget activity landscapes using protein-ligand interaction fingerprints: Interaction cliffs. Journal of Chemical Information and Modeling, 55, 251–262.CrossRef Méndez-Lucio, O., Kooistra, A. J., Graaf, C. D., Bender, A., & Medina-Franco, J. L. (2015). Analysing multitarget activity landscapes using protein-ligand interaction fingerprints: Interaction cliffs. Journal of Chemical Information and Modeling, 55, 251–262.CrossRef
go back to reference Naveja, J. J., & Medina-Franco, J. L. (2015a). Activity landscape of DNA methyltransferase inhibitors bridges chemoinformatics with epigenetic drug discovery. Expert Opinion on Drug Discovery, 10, 1059–1070.CrossRef Naveja, J. J., & Medina-Franco, J. L. (2015a). Activity landscape of DNA methyltransferase inhibitors bridges chemoinformatics with epigenetic drug discovery. Expert Opinion on Drug Discovery, 10, 1059–1070.CrossRef
go back to reference Naveja, J. J., & Medina-Franco, J. L. (2015b). Activity landscape sweeping: insights into the mechanism of inhibition and optimization of DNMT1 inhibitors. RSC Advances, 5, 63882–63895.CrossRef Naveja, J. J., & Medina-Franco, J. L. (2015b). Activity landscape sweeping: insights into the mechanism of inhibition and optimization of DNMT1 inhibitors. RSC Advances, 5, 63882–63895.CrossRef
go back to reference Naveja, J. J., Cortés-Benítez, F., Bratoeff, E., & Medina-Franco, J. L. (2016). Activity landscape analysis of novel 5α-reductase inhibitors. Molecular Diversity, 20, 771–780.CrossRef Naveja, J. J., Cortés-Benítez, F., Bratoeff, E., & Medina-Franco, J. L. (2016). Activity landscape analysis of novel 5α-reductase inhibitors. Molecular Diversity, 20, 771–780.CrossRef
go back to reference Noor, Z., Afzal, N., & Rashid, S. (2015). Exploration of novel inhibitors for class I histone deacetylase isoforms by QSAR modeling and molecular dynamics simulation assays. PLoS ONE, 10, e0139588.CrossRef Noor, Z., Afzal, N., & Rashid, S. (2015). Exploration of novel inhibitors for class I histone deacetylase isoforms by QSAR modeling and molecular dynamics simulation assays. PLoS ONE, 10, e0139588.CrossRef
go back to reference Ortiz, A. R., Pisabarro, M. T., Gago, F., & Wade, R. C. (1995). Prediction of drug binding affinities by comparative binding energy analysis. Journal of Medicinal Chemistry, 38, 2681–2691.CrossRef Ortiz, A. R., Pisabarro, M. T., Gago, F., & Wade, R. C. (1995). Prediction of drug binding affinities by comparative binding energy analysis. Journal of Medicinal Chemistry, 38, 2681–2691.CrossRef
go back to reference Papadatos, G., & Overington, J. P. (2014). The ChEMBL database: a taster for medicinal chemists. Future Medicinal Chemistry, 6, 361–364.CrossRef Papadatos, G., & Overington, J. P. (2014). The ChEMBL database: a taster for medicinal chemists. Future Medicinal Chemistry, 6, 361–364.CrossRef
go back to reference Peltason, L., & Bajorath, J. (2007a). Molecular similarity analysis uncovers heterogeneous structure-activity relationships and variable activity landscapes. Chemistry and Biology, 14, 489–497.CrossRef Peltason, L., & Bajorath, J. (2007a). Molecular similarity analysis uncovers heterogeneous structure-activity relationships and variable activity landscapes. Chemistry and Biology, 14, 489–497.CrossRef
go back to reference Peltason, L., & Bajorath, J. (2007b). SAR index: Quantifying the nature of structure-activity relationships. Journal of Medicinal Chemistry, 50, 5571–5578.CrossRef Peltason, L., & Bajorath, J. (2007b). SAR index: Quantifying the nature of structure-activity relationships. Journal of Medicinal Chemistry, 50, 5571–5578.CrossRef
go back to reference Peltason, L., & Bajorath, J. (2009). Systematic computational analysis of structure activity relationships: Concepts, challenges and recent advances. Future Medicinal Chemistry, 1, 451–466.CrossRef Peltason, L., & Bajorath, J. (2009). Systematic computational analysis of structure activity relationships: Concepts, challenges and recent advances. Future Medicinal Chemistry, 1, 451–466.CrossRef
go back to reference Peltason, L., & Bajorath, J. (2011). Computational analysis of activity and selectivity cliffs. Methods of Molecular Biology, 672, 119–132.CrossRef Peltason, L., & Bajorath, J. (2011). Computational analysis of activity and selectivity cliffs. Methods of Molecular Biology, 672, 119–132.CrossRef
go back to reference Peltason, L., Iyer, P., & Bajorath, J. (2010). Rationalizing three-dimensional activity landscapes and the influence of molecular representations on landscape topology and the formation of activity cliffs. Journal of Chemical Information and Modeling, 50, 1021–1033.CrossRef Peltason, L., Iyer, P., & Bajorath, J. (2010). Rationalizing three-dimensional activity landscapes and the influence of molecular representations on landscape topology and the formation of activity cliffs. Journal of Chemical Information and Modeling, 50, 1021–1033.CrossRef
go back to reference Perez-Villanueva, J., Santos, R., Hernandez-Campos, A., Giulianotti, M. A., Castillo, R., & Medina-Franco, J. L. (2010). Towards a systematic characterization of the antiprotozoal activity landscape of benzimidazole derivatives. Bioorganic and Medicinal Chemistry, 18, 91–7380.CrossRef Perez-Villanueva, J., Santos, R., Hernandez-Campos, A., Giulianotti, M. A., Castillo, R., & Medina-Franco, J. L. (2010). Towards a systematic characterization of the antiprotozoal activity landscape of benzimidazole derivatives. Bioorganic and Medicinal Chemistry, 18, 91–7380.CrossRef
go back to reference Pérez-Villanueva, J., Medina-Franco, J. L., Méndez-Lucio, O., Yoo, J., Soria-Arteche, O., Izquierdo, T., et al. (2012). CASE plots for the chemotype based activity and selectivity analysis: A CASE study of cyclooxygenase inhibitors. Chemical Biology and Drug Design, 80, 752–762.CrossRef Pérez-Villanueva, J., Medina-Franco, J. L., Méndez-Lucio, O., Yoo, J., Soria-Arteche, O., Izquierdo, T., et al. (2012). CASE plots for the chemotype based activity and selectivity analysis: A CASE study of cyclooxygenase inhibitors. Chemical Biology and Drug Design, 80, 752–762.CrossRef
go back to reference Pérez-Villanueva, J., Méndez-Lucio, O., Soria-Arteche, O., & Medina-Franco, J. (2015). Activity cliffs and activity cliff generators based on chemotype-related activity landscapes. Molecular Diversity, 19, 1021–1035.CrossRef Pérez-Villanueva, J., Méndez-Lucio, O., Soria-Arteche, O., & Medina-Franco, J. (2015). Activity cliffs and activity cliff generators based on chemotype-related activity landscapes. Molecular Diversity, 19, 1021–1035.CrossRef
go back to reference Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuit Systems and Magazine, 6, 21–44.CrossRef Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuit Systems and Magazine, 6, 21–44.CrossRef
go back to reference Prieto-Martinez, F. D., Gortari, E. F.-D., Mendez-Lucio, O. & Medina-Franco, J. L. (2016). A chemical space odyssey of inhibitors of histone deacetylases and bromodomains. RSC Advances 6, 56225–56239. Prieto-Martinez, F. D., Gortari, E. F.-D., Mendez-Lucio, O. & Medina-Franco, J. L. (2016). A chemical space odyssey of inhibitors of histone deacetylases and bromodomains. RSC Advances 6, 56225–56239.
go back to reference Rogers, D., & Hahn, M. (2010). Extended-connectivity fingerprints. Journal of Chemical Information and Modeling, 50, 742–754.CrossRef Rogers, D., & Hahn, M. (2010). Extended-connectivity fingerprints. Journal of Chemical Information and Modeling, 50, 742–754.CrossRef
go back to reference Rose, J. (2003). Methods for Data Analysis. In J. Gasteier (Ed.), Handbook of Chemoinformatics. Weinheim: Wiley-VCH. Rose, J. (2003). Methods for Data Analysis. In J. Gasteier (Ed.), Handbook of Chemoinformatics. Weinheim: Wiley-VCH.
go back to reference Ruijter, A. J. M. D., Gennip, A. H. V., Caron, H. N., Kemp, S., & Kuilenburg, A. B. P. V. (2003). Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochemical Journal, 370, 737–749.CrossRef Ruijter, A. J. M. D., Gennip, A. H. V., Caron, H. N., Kemp, S., & Kuilenburg, A. B. P. V. (2003). Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochemical Journal, 370, 737–749.CrossRef
go back to reference Schneider, G., Neidhart, W., Giller, T., & Schmid, G. (1999). Scaffold-hopping by topological pharmacophore search: A contribution to virtual screening. Angewandte Chemie International Edition, 38, 2894–2896.CrossRef Schneider, G., Neidhart, W., Giller, T., & Schmid, G. (1999). Scaffold-hopping by topological pharmacophore search: A contribution to virtual screening. Angewandte Chemie International Edition, 38, 2894–2896.CrossRef
go back to reference Scior, T., Medina-Franco, J. L., Do, Q. T., Martínez-Mayorga, K., Yunes Rojas, J. A., & Bernard, P. (2009). How to recognize and workaround pitfalls in QSAR studies: A critical review. Current Medicinal Chemistry, 16, 4297–4313.CrossRef Scior, T., Medina-Franco, J. L., Do, Q. T., Martínez-Mayorga, K., Yunes Rojas, J. A., & Bernard, P. (2009). How to recognize and workaround pitfalls in QSAR studies: A critical review. Current Medicinal Chemistry, 16, 4297–4313.CrossRef
go back to reference Seebeck, B., Wagener, M., & Rarey, M. (2011). From activity cliffs to target-specific scoring models and pharmacophore hypotheses. ChemMedChem, 6, 1630–1639.CrossRef Seebeck, B., Wagener, M., & Rarey, M. (2011). From activity cliffs to target-specific scoring models and pharmacophore hypotheses. ChemMedChem, 6, 1630–1639.CrossRef
go back to reference Shanmugasundaram, V. & Maggiora, G. M. (2001). Characterizing property and activity landscapes using an information-theoretic approach. CINF-032. In 222nd ACS National Meeting, Chicago, IL, United States. American Chemical Society, Washington, D.C. Shanmugasundaram, V. & Maggiora, G. M. (2001). Characterizing property and activity landscapes using an information-theoretic approach. CINF-032. In 222nd ACS National Meeting, Chicago, IL, United States. American Chemical Society, Washington, D.C.
go back to reference Sharma, S., Chauhan, R., Paliwal, S., & Dwivedi, J. (2013). 2-D QSAR model development for α-amino suberic acid derivatives as a novel anticancer agent. Medicinal Chemistry Research, 22, 1517–1527.CrossRef Sharma, S., Chauhan, R., Paliwal, S., & Dwivedi, J. (2013). 2-D QSAR model development for α-amino suberic acid derivatives as a novel anticancer agent. Medicinal Chemistry Research, 22, 1517–1527.CrossRef
go back to reference Silvestri, L., Ballante, F., Mai, A., Marshall, G. R., & Ragno, R. (2012). Histone deacetylase inhibitors: Structure-based modeling and isoform-selectivity prediction. Journal of Chemical Information and Modeling, 52, 2215–2235.CrossRef Silvestri, L., Ballante, F., Mai, A., Marshall, G. R., & Ragno, R. (2012). Histone deacetylase inhibitors: Structure-based modeling and isoform-selectivity prediction. Journal of Chemical Information and Modeling, 52, 2215–2235.CrossRef
go back to reference Smith, M. R. & Martinez, T. (2011) Improving classification accuracy by identifying and removing instances that should be misclassified. The 2011 International Joint Conference on Neural Networks (IJCNN). Smith, M. R. & Martinez, T. (2011) Improving classification accuracy by identifying and removing instances that should be misclassified. The 2011 International Joint Conference on Neural Networks (IJCNN).
go back to reference Smith, M. R., Martinez, T., & Giraud-Carrier, C. (2014). An instance level analysis of data complexity. Machine Learning, 95, 225–256.CrossRef Smith, M. R., Martinez, T., & Giraud-Carrier, C. (2014). An instance level analysis of data complexity. Machine Learning, 95, 225–256.CrossRef
go back to reference Sterner, D. E., & Berger, S. L. (2000). Acetylation of histones and transcription-related factors. Molecular Biology Review, 64, 435–459.CrossRef Sterner, D. E., & Berger, S. L. (2000). Acetylation of histones and transcription-related factors. Molecular Biology Review, 64, 435–459.CrossRef
go back to reference Stumpfe, D., & Bajorath, J. (2012a). Exploring activity cliffs in medicinal chemistry. Journal of Medicinal Chemistry, 55, 2932–2942.CrossRef Stumpfe, D., & Bajorath, J. (2012a). Exploring activity cliffs in medicinal chemistry. Journal of Medicinal Chemistry, 55, 2932–2942.CrossRef
go back to reference Stumpfe, D. & Bajorath, J. (2012b). Methods for SAR visualization. RSC Advances 2, 369–378. Stumpfe, D. & Bajorath, J. (2012b). Methods for SAR visualization. RSC Advances 2, 369–378.
go back to reference Stumpfe, D., Hu, Y., Dimova, D., & Bajorath, J. (2013). Recent progress in understanding activity cliffs and their utility in medicinal chemistry. Journal of Medicinal Chemistry, 57, 18–28.CrossRef Stumpfe, D., Hu, Y., Dimova, D., & Bajorath, J. (2013). Recent progress in understanding activity cliffs and their utility in medicinal chemistry. Journal of Medicinal Chemistry, 57, 18–28.CrossRef
go back to reference Sun, Y., Zhou, H., Zhu, H., & Leung, S.-W. (2016). Ligand-based virtual screening and inductive learning for identification of SIRT1 inhibitors in natural products. Science Reports, 6, 19312.CrossRef Sun, Y., Zhou, H., Zhu, H., & Leung, S.-W. (2016). Ligand-based virtual screening and inductive learning for identification of SIRT1 inhibitors in natural products. Science Reports, 6, 19312.CrossRef
go back to reference Tropsha, A. (2010). Best practices for QSAR model development, validation, and exploitation. Molecular Informatics, 29, 476–488.CrossRef Tropsha, A. (2010). Best practices for QSAR model development, validation, and exploitation. Molecular Informatics, 29, 476–488.CrossRef
go back to reference Tropsha, A., Gramatica, P., & Gombar, V. K. (2003). The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR & Combinatorial Science, 22, 69–77.CrossRef Tropsha, A., Gramatica, P., & Gombar, V. K. (2003). The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR & Combinatorial Science, 22, 69–77.CrossRef
go back to reference Tsunoyama, K., Amini, A., Sternberg, M. J., & Muggleton, S. H. (2008). Scaffold hopping in drug discovery using inductive logic programming. Journal of Chemical Information and Modeling, 48, 57–949.CrossRef Tsunoyama, K., Amini, A., Sternberg, M. J., & Muggleton, S. H. (2008). Scaffold hopping in drug discovery using inductive logic programming. Journal of Chemical Information and Modeling, 48, 57–949.CrossRef
go back to reference Vogt, M., Wassermann, A. M., & Bajorath, J. (2010). Application of information—Theoretic concepts in chemoinformatics. Information., 1, 60–73.CrossRef Vogt, M., Wassermann, A. M., & Bajorath, J. (2010). Application of information—Theoretic concepts in chemoinformatics. Information., 1, 60–73.CrossRef
go back to reference Vogt, M., Huang, Y., & Bajorath, J. (2011). From activity cliffs to activity ridges: Informative data structures for SAR analysis. Journal of Chemical Information and Modeling, 51, 1848–1856.CrossRef Vogt, M., Huang, Y., & Bajorath, J. (2011). From activity cliffs to activity ridges: Informative data structures for SAR analysis. Journal of Chemical Information and Modeling, 51, 1848–1856.CrossRef
go back to reference Vogt, M., Iyer, P., Maggiora, G. M., & Bajorath, J. (2013). Conditional probabilities of activity landscape features for individual compounds. Journal of Chemical Information and Modeling, 53, 12–1602. Vogt, M., Iyer, P., Maggiora, G. M., & Bajorath, J. (2013). Conditional probabilities of activity landscape features for individual compounds. Journal of Chemical Information and Modeling, 53, 12–1602.
go back to reference Waddell, J., & Medina-Franco, J. L. (2012). Bioactivity landscape modeling: Chemoinformatic characterization of structure-activity relationships of compounds tested across multiple targets. Bioorganic and Medicinal Chemistry, 20, 5443–5452.CrossRef Waddell, J., & Medina-Franco, J. L. (2012). Bioactivity landscape modeling: Chemoinformatic characterization of structure-activity relationships of compounds tested across multiple targets. Bioorganic and Medicinal Chemistry, 20, 5443–5452.CrossRef
go back to reference Waddington, C. H. (2012). The epigenotype. International Journal of Epidemiology, 41, 10–13.CrossRef Waddington, C. H. (2012). The epigenotype. International Journal of Epidemiology, 41, 10–13.CrossRef
go back to reference Wassermann, A. M., & Bajorath, J. (2010). Chemical substitutions that introduce activity cliffs across different compound classes and biological targets. Journal of Chemical Information and Modeling, 50, 1248–1256.CrossRef Wassermann, A. M., & Bajorath, J. (2010). Chemical substitutions that introduce activity cliffs across different compound classes and biological targets. Journal of Chemical Information and Modeling, 50, 1248–1256.CrossRef
go back to reference Wassermann, A. M., Wawer, M., & Bajorath, J. (2010). Activity landscape representations for structure-activity relationship analysis. Journal of Medicinal Chemistry, 53, 8209–8223.CrossRef Wassermann, A. M., Wawer, M., & Bajorath, J. (2010). Activity landscape representations for structure-activity relationship analysis. Journal of Medicinal Chemistry, 53, 8209–8223.CrossRef
go back to reference Wawer, M., & Bajorath, J. (2009). Systematic extraction of structure-activity relationship information from biological screening data. ChemMedChem, 4, 1431–1438.CrossRef Wawer, M., & Bajorath, J. (2009). Systematic extraction of structure-activity relationship information from biological screening data. ChemMedChem, 4, 1431–1438.CrossRef
go back to reference Wawer, M., & Bajorath, J. (2010). Similarity-potency trees: A method to search for SAR information in compound data sets and derive SAR rules. Journal of Chemical Information and Modeling, 50, 1395–1409.CrossRef Wawer, M., & Bajorath, J. (2010). Similarity-potency trees: A method to search for SAR information in compound data sets and derive SAR rules. Journal of Chemical Information and Modeling, 50, 1395–1409.CrossRef
go back to reference Wawer, M., Peltason, L., Weskamp, N., Teckentrup, A., & Bajorath, J. (2008). Structure-activity relationship anatomy by network-like similarity graphs and local structure-activity relationship indices. Journal of Medicinal Chemistry, 51, 6075–6084.CrossRef Wawer, M., Peltason, L., Weskamp, N., Teckentrup, A., & Bajorath, J. (2008). Structure-activity relationship anatomy by network-like similarity graphs and local structure-activity relationship indices. Journal of Medicinal Chemistry, 51, 6075–6084.CrossRef
go back to reference Wei, H.-Y., Chen, G.-J., Chen, C.-L., & Lin, T.-H. (2012). Developing consensus 3D-QSAR and pharmacophore models for several beta-secretase, farnesyl transferase and histone deacetylase inhibitors. Journal of Molecular Modeling, 18, 675–692.CrossRef Wei, H.-Y., Chen, G.-J., Chen, C.-L., & Lin, T.-H. (2012). Developing consensus 3D-QSAR and pharmacophore models for several beta-secretase, farnesyl transferase and histone deacetylase inhibitors. Journal of Molecular Modeling, 18, 675–692.CrossRef
go back to reference Witten, I. H. & Frank, E. (2005). Data mining: Practical machine learning tools and techniques. San Francisco, CA, Morgan Kaufmann. Witten, I. H. & Frank, E. (2005). Data mining: Practical machine learning tools and techniques. San Francisco, CA, Morgan Kaufmann.
go back to reference Xu, Y. J., & Johnson, M. (2002). Using molecular equivalence numbers to visually explore structural features that distinguish chemical libraries. Journal of Chemical Information and Computer Sciences, 42, 912–926.CrossRef Xu, Y. J., & Johnson, M. (2002). Using molecular equivalence numbers to visually explore structural features that distinguish chemical libraries. Journal of Chemical Information and Computer Sciences, 42, 912–926.CrossRef
go back to reference Yang, Z., & Gao, D. (2013). Classification for imbalanced and overlapping classes using outlier detection and sampling techniques. Applied Mathematics and Information Science, 7, 375–381.CrossRef Yang, Z., & Gao, D. (2013). Classification for imbalanced and overlapping classes using outlier detection and sampling techniques. Applied Mathematics and Information Science, 7, 375–381.CrossRef
go back to reference Yongye, A. B., & Medina-Franco, J. L. (2013). Systematic characterization of structure–activity relationships and ADMET compliance: A case study. Drug Discovery Today, 18, 732–739.CrossRef Yongye, A. B., & Medina-Franco, J. L. (2013). Systematic characterization of structure–activity relationships and ADMET compliance: A case study. Drug Discovery Today, 18, 732–739.CrossRef
go back to reference Yongye, A., Byler, K., Santos, R., Martínez-Mayorga, K., Maggiora, G. M., & Medina-Franco, J. L. (2011). Consensus models of activity landscapes with multiple chemical, conformer and property representations. Journal of Chemical Information and Modeling, 51, 1259–1270.CrossRef Yongye, A., Byler, K., Santos, R., Martínez-Mayorga, K., Maggiora, G. M., & Medina-Franco, J. L. (2011). Consensus models of activity landscapes with multiple chemical, conformer and property representations. Journal of Chemical Information and Modeling, 51, 1259–1270.CrossRef
go back to reference Yoo, J., Choi, S., & Medina-Franco, J. L. (2013). Molecular modeling studies of the novel inhibitors of DNA methyltransferases SGI-1027 and CBC12: Implications for the mechanism of inhibition of DNMTs. PLoS ONE, 8, e62152.CrossRef Yoo, J., Choi, S., & Medina-Franco, J. L. (2013). Molecular modeling studies of the novel inhibitors of DNA methyltransferases SGI-1027 and CBC12: Implications for the mechanism of inhibition of DNMTs. PLoS ONE, 8, e62152.CrossRef
go back to reference Zhang, L., Fourches, D., Sedykh, A., Zhu, H., Golbraikh, A., Ekins, S., et al. (2013). Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. Journal of Chemical Information and Modeling, 53, 92–475. Zhang, L., Fourches, D., Sedykh, A., Zhu, H., Golbraikh, A., Ekins, S., et al. (2013). Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. Journal of Chemical Information and Modeling, 53, 92–475.
go back to reference Zheng, Y. G. (2015). Chapter 1—The state of the art of epigenetic technologies. Epigenetic technological applications. Boston: Academic Press. Zheng, Y. G. (2015). Chapter 1—The state of the art of epigenetic technologies. Epigenetic technological applications. Boston: Academic Press.
Metadata
Title
Quantitative Structure-Epigenetic Activity Relationships
Authors
Mario Omar García-Sánchez
Maykel Cruz-Monteagudo
José L. Medina-Franco
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-56850-8_8

Premium Partner