Skip to main content
Top
Published in: Semiconductors 9/2018

01-09-2018 | SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA

Quantization of the Electromagnetic Field in Three-Dimensional Photonic Structures on the Basis of the Scattering Matrix Formalism (S Quantization)

Authors: K. A. Ivanov, A. R. Gubaydullin, M. A. Kaliteevski

Published in: Semiconductors | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A technique for quantization of the electromagnetic field in photonic nanostructures with three-dimensional modulation of the dielectric constant is developed on the basis of the scattering matrix formalism (S quantization in the three-dimensional case). Quantization is based on equating the eigenvalues of the scattering matrix to unity, which is equivalent to equating each other the sets of Fourier expansions for the fields of the waves incident on the structure and propagating away from the structure. The spatial distribution of electromagnetic fields of the modes in a photonic nanostructure is calculated on the basis of the R and T matrices describing the reflection and transmission of the Fourier components by the structure. To calculate the reflection and transmission coefficients of individual real-space and Fourier-space components, the structure is divided into parallel layers within which the dielectric constant varies as a function of two-dimensional coordinates. Using the Fourier transform, Maxwell’s equations are written in the form of a matrix connecting the Fourier components of the electric field at the boundaries of neighboring layers. Based on the calculated reflection and transmission vectors for all polarizations and Fourier components, the scattering matrix for the entire structure is formed and quantization is carried out by equating the eigenvalues of the scattering matrix to unity. The developed method makes it possible to obtain the spatial profiles of eigenmodes without solving a system of nonlinear integro-differential equations and significantly reduces the computational resources required for calculating the probability of spontaneous emission in three-dimensional systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Loudon, Quantum Theory of Light (Oxford Univ. Press, Oxford, 2000).MATH R. Loudon, Quantum Theory of Light (Oxford Univ. Press, Oxford, 2000).MATH
8.
go back to reference C. Symonds, G. Lheureux J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, Nano Lett. 13, 3179 (2013).ADSCrossRef C. Symonds, G. Lheureux J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, Nano Lett. 13, 3179 (2013).ADSCrossRef
9.
go back to reference L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995).CrossRef L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995).CrossRef
10.
go back to reference V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1982). V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1982).
11.
go back to reference F. de Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, Phys. Rev. A 43, 2480 (1991).ADSCrossRef F. de Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, Phys. Rev. A 43, 2480 (1991).ADSCrossRef
12.
go back to reference M. A. Kaliteevskii, V. A. Mazlin, K. A. Ivanov, and A. R. Gubaydullin, Opt. Spectrosc. 119, 832 (2015).ADSCrossRef M. A. Kaliteevskii, V. A. Mazlin, K. A. Ivanov, and A. R. Gubaydullin, Opt. Spectrosc. 119, 832 (2015).ADSCrossRef
14.
go back to reference S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, Phys. Rev. B 66, 045102 (2002).ADSCrossRef S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, Phys. Rev. B 66, 045102 (2002).ADSCrossRef
15.
go back to reference M. A. Kaliteevskii, A. R. Gubaydullin, K. A. Ivanov, and V. A. Mazlin, Opt. Spectrosc. 121, 410 (2016).ADSCrossRef M. A. Kaliteevskii, A. R. Gubaydullin, K. A. Ivanov, and V. A. Mazlin, Opt. Spectrosc. 121, 410 (2016).ADSCrossRef
17.
go back to reference M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1964; Nauka, Moscow, 1973). M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1964; Nauka, Moscow, 1973).
18.
go back to reference K. A. Ivanov, V. V. Nikolaev, A. R. Gubaydullin, and M. A. Kaliteevski, Opt. Spectrosc. 123, 615 (2017).ADSCrossRef K. A. Ivanov, V. V. Nikolaev, A. R. Gubaydullin, and M. A. Kaliteevski, Opt. Spectrosc. 123, 615 (2017).ADSCrossRef
Metadata
Title
Quantization of the Electromagnetic Field in Three-Dimensional Photonic Structures on the Basis of the Scattering Matrix Formalism (S Quantization)
Authors
K. A. Ivanov
A. R. Gubaydullin
M. A. Kaliteevski
Publication date
01-09-2018
Publisher
Pleiades Publishing
Published in
Semiconductors / Issue 9/2018
Print ISSN: 1063-7826
Electronic ISSN: 1090-6479
DOI
https://doi.org/10.1134/S106378261809004X

Other articles of this Issue 9/2018

Semiconductors 9/2018 Go to the issue

MICROCRYSTALLINE, NANOCRYSTALLINE, POROUS, AND COMPOSITE SEMICONDUCTORS

On the Formation of IR-Light-Emitting Ge Nanocrystals in Ge:SiO2 Films

SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA

Template Synthesis of Monodisperse Spherical Nanocomposite SiO2/GaN:Eu3+ Particles

Premium Partner