Skip to main content
Top

2017 | OriginalPaper | Chapter

4. Quantization

Author : Marcel Pelgrom

Published in: Analog-to-Digital Conversion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantization is the second main process in conversion. This chapter deals with the mathematical derivation of quantization in several resolution ranges. Quantization results in several specific parameters: integral and differential linearities and derived problems such as monotonicity.The signal-to-noise ratio is also affected by quantization. Some special topics are the effect of dither and the relation between differential non-linearity and signal-to-noise.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Other coding schemes will appear when discussing the implementation of complex converters, e.g., locally ternary (three-level) coding can be used in full differential implementations. In error correction schemes a base lower than 2 is applied.
 
2
The IEEE has standardized a number of conversion terms in standards IEEE 1057 [48] and IEEE 1241 [49, 50].
 
3
Other binary code formats are discussed in Sect. 7.​1.​1
 
4
N. Blachman has mathematically analyzed many processes around quantization. His publications from 1960–1985 form a good starting point to dive deeper in this field, e.g., [52].
 
5
Note that in a formal sense just voltage-squared is calculated, which lacks the impedance level and the time span needed to reach the dimension of power: Watt or V2/\(\Omega \) s. In quantization theory “voltage-squared” power is only used to compare to another “voltage-squared” power, assuming that both relate to the same impedance level and the same time span. This quantization error becomes visible to an engineer (mostly) as part of a power spectrum. For that reason this book prefers the term quantization power instead of energy.
 
6
43.8 dB is a short hand for 4. 167 × 10−5 power ratio. Use the exponential notation in complex calculations.
 
7
There has been an extensive search for optimum dither signals in the 1960–1970s. After that era the interest for dither has reduced. The concept, however, still provides valuable insight, e.g., sigma-delta converters can be understood as low-resolution converters that generate their own dither.
 
8
A manipulation like this is aversely coined: “specmanship.”
 
9
Non-English speakers often confuse monotonic with monotonous which is synonymous to boring, dull, and uninteresting.
 
10
The author of this book was educated with the notion that “log” operations can only be performed on dimensionless quantities. Obviously this is not the case here.
 
11
Compared to Moore’s law for digital circuit where speed doubles and area and power halves for every generation (2 years) this is a meager result.
 
Literature
2.
go back to reference van de Plassche R (1994) Integrated analog-to-digital and digital-to-analog converters. Kluwer Academic Publishers, Dordrecht. ISBN:0-7923-9436-4 (2nd edition. ISBN:1-4020-7500-6, The Netherlands, 2003) van de Plassche R (1994) Integrated analog-to-digital and digital-to-analog converters. Kluwer Academic Publishers, Dordrecht. ISBN:0-7923-9436-4 (2nd edition. ISBN:1-4020-7500-6, The Netherlands, 2003)
46.
go back to reference Sansen W (1999) Distortion in elementary transistor circuits. IEEE Trans Circuits Syst II 46:315–325 4. Quantization Sansen W (1999) Distortion in elementary transistor circuits. IEEE Trans Circuits Syst II 46:315–325 4. Quantization
47.
go back to reference Reeves H (1942) A electric signaling system. US Patent 2-272-070, issued February 3, 1942. Also French Patent 852–183 issued 1938, and British Patent 538–860 issued 1939 Reeves H (1942) A electric signaling system. US Patent 2-272-070, issued February 3, 1942. Also French Patent 852–183 issued 1938, and British Patent 538–860 issued 1939
48.
go back to reference IEEE (1994) IEEE Std 1057–1994 IEEE standard for digitizing waveform recorders IEEE (1994) IEEE Std 1057–1994 IEEE standard for digitizing waveform recorders
49.
go back to reference IEEE (2000) IEEE 1241–2000, Standard for terminology and test methods for analog-to-digital converters. IEEE Std 1241. ISBN:0-7381-2724-8, revision 2007 IEEE (2000) IEEE 1241–2000, Standard for terminology and test methods for analog-to-digital converters. IEEE Std 1241. ISBN:0-7381-2724-8, revision 2007
50.
go back to reference Tilden SJ, Linnenbrink TE, Green PJ (1999) Overview of IEEE-STD-1241 standard for terminology and test methods for analog-to-digital converters. In: Instrumentation and measurement technology conference, pp 1498–1503 Tilden SJ, Linnenbrink TE, Green PJ (1999) Overview of IEEE-STD-1241 standard for terminology and test methods for analog-to-digital converters. In: Instrumentation and measurement technology conference, pp 1498–1503
52.
go back to reference Blachman N (1985) The intermodulation and distortion due to quantization of sinusoids. IEEE Trans Acoust Speech Signal Process 33:1417–1426CrossRef Blachman N (1985) The intermodulation and distortion due to quantization of sinusoids. IEEE Trans Acoust Speech Signal Process 33:1417–1426CrossRef
53.
go back to reference Oude Alink MS, Kokkeler ABJ, Klumperink EAM, Rovers KC, Smit G, Nauta B (2009) Spurious-free dynamic range of a uniform quantizer. IEEE Trans Circuits Syst II: Express Briefs 56:434–438CrossRef Oude Alink MS, Kokkeler ABJ, Klumperink EAM, Rovers KC, Smit G, Nauta B (2009) Spurious-free dynamic range of a uniform quantizer. IEEE Trans Circuits Syst II: Express Briefs 56:434–438CrossRef
54.
go back to reference Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inform Theory 28:129–137 (transcript from 1957 paper) Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inform Theory 28:129–137 (transcript from 1957 paper)
56.
go back to reference Lipshitz SP, Wannamaker RA, Vanderkooy J (1992) Quantization and dither: a theoretical study. J Audio Eng Soc 40:355–375 Lipshitz SP, Wannamaker RA, Vanderkooy J (1992) Quantization and dither: a theoretical study. J Audio Eng Soc 40:355–375
57.
go back to reference Wannamaker RA, Lipshitz SP, Vanderkooy J, Wright JN (2000) A theory of nonsubtractive dither. IEEE Trans Signal Process 48:499–516CrossRef Wannamaker RA, Lipshitz SP, Vanderkooy J, Wright JN (2000) A theory of nonsubtractive dither. IEEE Trans Signal Process 48:499–516CrossRef
58.
go back to reference Ceballos JL, Galton I, Temes GC (2005) Stochastic analog-to- digital conversion. In: IEEE midwest symposium circuits systems, pp 855–858 Ceballos JL, Galton I, Temes GC (2005) Stochastic analog-to- digital conversion. In: IEEE midwest symposium circuits systems, pp 855–858
59.
go back to reference Walden RH (1999) Analog-to-digital converter survey and analysis. IEEE J Sel Areas Commun 17:539–550CrossRef Walden RH (1999) Analog-to-digital converter survey and analysis. IEEE J Sel Areas Commun 17:539–550CrossRef
60.
go back to reference Vittoz E (1995) Low power low-voltage limitations and prospects in analog design. In: van de Plassche RJ (ed) Advances in analog circuit design. Kluwer Academic Publishers, Boston, p 3CrossRef Vittoz E (1995) Low power low-voltage limitations and prospects in analog design. In: van de Plassche RJ (ed) Advances in analog circuit design. Kluwer Academic Publishers, Boston, p 3CrossRef
61.
go back to reference Dijkstra E, Nys O, Blumenkrantz E (1995) Low power oversampled A/D converters. In: van de Plassche RJ (ed) Advances in analog circuit design. Kluwer Academic Publishers, Boston, p 89CrossRef Dijkstra E, Nys O, Blumenkrantz E (1995) Low power oversampled A/D converters. In: van de Plassche RJ (ed) Advances in analog circuit design. Kluwer Academic Publishers, Boston, p 89CrossRef
62.
go back to reference Giotta D, Pessl P, Clara M, Klatzer W, Gaggl R (2004) Low-power 14-bit current steering DAC for ADSL applications in 0.13 μm CMOS. In: European solid-state circuits conference, pp 163–166 5. Accuracy Giotta D, Pessl P, Clara M, Klatzer W, Gaggl R (2004) Low-power 14-bit current steering DAC for ADSL applications in 0.13 μm CMOS. In: European solid-state circuits conference, pp 163–166 5. Accuracy
165.
go back to reference Lim Y, Flynn MP (2015) A 1 mW 71.5 dB SNDR 50 MS/s 13 bit fully differential ring amplifier based SAR-assisted pipeline ADC. IEEE J Solid-State Circuits 50:2901–2911CrossRef Lim Y, Flynn MP (2015) A 1 mW 71.5 dB SNDR 50 MS/s 13 bit fully differential ring amplifier based SAR-assisted pipeline ADC. IEEE J Solid-State Circuits 50:2901–2911CrossRef
195.
go back to reference Schvan P, Pollex D, Wang S-C, Falt C, Ben-Hamida N (2006) A 22GS/s 5b ADC in 0.13μm SiGe BiCMOS. In: International solid-state circuits conference, digest of technical papers, pp 572–573 Schvan P, Pollex D, Wang S-C, Falt C, Ben-Hamida N (2006) A 22GS/s 5b ADC in 0.13μm SiGe BiCMOS. In: International solid-state circuits conference, digest of technical papers, pp 572–573
199.
go back to reference Scholtens PCS, Vertregt M (2002) A 6-b 1.6-Gsample/s flash ADC in 0.18μm CMOS using averaging termination. IEEE J Solid-State Circuits 37:1599–1609CrossRef Scholtens PCS, Vertregt M (2002) A 6-b 1.6-Gsample/s flash ADC in 0.18μm CMOS using averaging termination. IEEE J Solid-State Circuits 37:1599–1609CrossRef
211.
go back to reference Shimizu Y, Murayama S, Kudoh K, Yatsuda H, Ogawa A (2006) A 30mW 12b 40MS/s subranging ADC with a high-gain offset-canceling positive-feedback amplifier in 90nm digital CMOS. In: International solid-state circuits conference, digest of technical papers, pp 802–803 Shimizu Y, Murayama S, Kudoh K, Yatsuda H, Ogawa A (2006) A 30mW 12b 40MS/s subranging ADC with a high-gain offset-canceling positive-feedback amplifier in 90nm digital CMOS. In: International solid-state circuits conference, digest of technical papers, pp 802–803
224.
go back to reference Chai Y, Wu J-T (2012) A 5.37mW 10b 200MS/s dual-path pipelined ADC. In: International solid-state circuits conference, digest of technical papers, pp 462–463 Chai Y, Wu J-T (2012) A 5.37mW 10b 200MS/s dual-path pipelined ADC. In: International solid-state circuits conference, digest of technical papers, pp 462–463
231.
go back to reference Geelen G, Paulus E, Simanjuntak D, Pastoor H, Verlinden R (2006) A 90nm CMOS 1.2V 10b power and speed programmable pipelined ADC with 0.5pJ/conversion-step. In: International solid-state circuits conference, digest of technical papers, pp 214–215 Geelen G, Paulus E, Simanjuntak D, Pastoor H, Verlinden R (2006) A 90nm CMOS 1.2V 10b power and speed programmable pipelined ADC with 0.5pJ/conversion-step. In: International solid-state circuits conference, digest of technical papers, pp 214–215
242.
go back to reference Brooks L, Lee H-S (2009) A 12b 50MS/s fully differential zero-crossing-based ADC without CMFB. In: International solid-state circuits conference, digest of technical papers, pp 166–167 Brooks L, Lee H-S (2009) A 12b 50MS/s fully differential zero-crossing-based ADC without CMFB. In: International solid-state circuits conference, digest of technical papers, pp 166–167
246.
go back to reference Craninckx J, Van der Plas G (2007) A 65fJ/conversion-step 0-to-50MS/s 0-to-0.7mW 9b charge-sharing SAR ADC in 90nm Digital CMOS. In: International solid-state circuits conference, digest of technical papers, pp 246-247 Craninckx J, Van der Plas G (2007) A 65fJ/conversion-step 0-to-50MS/s 0-to-0.7mW 9b charge-sharing SAR ADC in 90nm Digital CMOS. In: International solid-state circuits conference, digest of technical papers, pp 246-247
248.
go back to reference van Elzakker M, van Tuijl E, Geraedts P, Schinkel D, Klumperink E, Nauta B (2008) A 1.9μW 4.4fJ/conversion-step 10b 1MS/s charge-redistribution ADC. In: International solid-state circuits conference, digest of technical papers, pp 244–245 van Elzakker M, van Tuijl E, Geraedts P, Schinkel D, Klumperink E, Nauta B (2008) A 1.9μW 4.4fJ/conversion-step 10b 1MS/s charge-redistribution ADC. In: International solid-state circuits conference, digest of technical papers, pp 244–245
253.
go back to reference Harpe PJA, Cantatore E, van Roermund AHM (2014) An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1 dB SNDR. In: International solid-state circuits conference, digest of technical papers, pp 194–195 Harpe PJA, Cantatore E, van Roermund AHM (2014) An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1 dB SNDR. In: International solid-state circuits conference, digest of technical papers, pp 194–195
256.
go back to reference Hesener M, Ficher T, Hanneberg A, Herbison D, Kuttner F, Wenskel H (2007) A 14b 40MS/s redundant SAR ADC with 480 MHz in 0.13 pm CMOS. In: International solid-state circuits conference, digest of technical papers, pp 248–249 Hesener M, Ficher T, Hanneberg A, Herbison D, Kuttner F, Wenskel H (2007) A 14b 40MS/s redundant SAR ADC with 480 MHz in 0.13 pm CMOS. In: International solid-state circuits conference, digest of technical papers, pp 248–249
258.
go back to reference Pelgrom MJM, van Rens AC, Vertregt M, Dijkstra MB (1994) A 25-Ms/s 8-bit CMOS A/D converter for embedded application. IEEE J Solid-State Circuits 29:879–886CrossRef Pelgrom MJM, van Rens AC, Vertregt M, Dijkstra MB (1994) A 25-Ms/s 8-bit CMOS A/D converter for embedded application. IEEE J Solid-State Circuits 29:879–886CrossRef
264.
go back to reference Naraghi S, Courcy M, Flynn MP (2009) A 9b 14 μW 0.06 mm2 PPM ADC in 90nm digital CMOS. In: IEEE International solid-state circuits conference digest of technical papers, pp 168–169 Naraghi S, Courcy M, Flynn MP (2009) A 9b 14 μW 0.06 mm2 PPM ADC in 90nm digital CMOS. In: IEEE International solid-state circuits conference digest of technical papers, pp 168–169
283.
go back to reference Doris K, Janssen E, Nani C, Zanikopoulos A, Van der Wiede G (2011) A 480 mW 2.6 GS/s 10b Time-Interleaved ADC With 48.5 dB SNDR up to Nyquist in 65 nm CMOS. IEEE J Solid-State Circuits 46:2821–2833CrossRef Doris K, Janssen E, Nani C, Zanikopoulos A, Van der Wiede G (2011) A 480 mW 2.6 GS/s 10b Time-Interleaved ADC With 48.5 dB SNDR up to Nyquist in 65 nm CMOS. IEEE J Solid-State Circuits 46:2821–2833CrossRef
288.
go back to reference Hsu C-C, Huang F-C, Shih C-Y, Huang C-C, Lin Y-H, Lee C-C, Razavi B (2007) An 11b 800MS/s time-interleaved ADC with digital background calibration. In: International solid-state circuits conference, digest of technical papers, pp 164–165 Hsu C-C, Huang F-C, Shih C-Y, Huang C-C, Lin Y-H, Lee C-C, Razavi B (2007) An 11b 800MS/s time-interleaved ADC with digital background calibration. In: International solid-state circuits conference, digest of technical papers, pp 164–165
298.
go back to reference Brandolini M et al (2015) A 5 GS/s 150 mW 10 b SHA-less pipelined/SAR hybrid ADC for direct-sampling systems in 28 nm CMOS. IEEE J Solid-State Circuits 50:2922–2934CrossRef Brandolini M et al (2015) A 5 GS/s 150 mW 10 b SHA-less pipelined/SAR hybrid ADC for direct-sampling systems in 28 nm CMOS. IEEE J Solid-State Circuits 50:2922–2934CrossRef
299.
go back to reference Verma S, Kasapi A, Lee L, Liu D (2013) A 10.3 GS/s 6b flash ADC for 10G ethernet applications. In: International solid-state circuits conference, digest of technical papers, pp 462–463 Verma S, Kasapi A, Lee L, Liu D (2013) A 10.3 GS/s 6b flash ADC for 10G ethernet applications. In: International solid-state circuits conference, digest of technical papers, pp 462–463
301.
go back to reference Setterberg B et al (2013) A 14 b 2.5 GS/s 8-way-interleaved pipelined ADC with background calibration and digital dynamic linearity correction. In: International solid-state circuits conference, digest of technical papers, pp 466–467 10. Sigma-Delta Conversion Setterberg B et al (2013) A 14 b 2.5 GS/s 8-way-interleaved pipelined ADC with background calibration and digital dynamic linearity correction. In: International solid-state circuits conference, digest of technical papers, pp 466–467 10. Sigma-Delta Conversion
323.
go back to reference Christen T, Burger T, Huang Q (2007) A 0.13 μm CMOS EDGE/UMTS/WLAN tri-mode ADC with-92dB THD. In: International solid-state circuits conference, digest of technical papers, pp 240–241 Christen T, Burger T, Huang Q (2007) A 0.13 μm CMOS EDGE/UMTS/WLAN tri-mode ADC with-92dB THD. In: International solid-state circuits conference, digest of technical papers, pp 240–241
327.
go back to reference Chae YC, Souri K, Makinwa KAA (2013) A 6.3 μW 20bit incremental zoom-ADC with 6 ppm INL and 1 μV offset. IEEE J Solid-State Circuits 48:3019–3027CrossRef Chae YC, Souri K, Makinwa KAA (2013) A 6.3 μW 20bit incremental zoom-ADC with 6 ppm INL and 1 μV offset. IEEE J Solid-State Circuits 48:3019–3027CrossRef
336.
go back to reference Dong Y, Yang W, Schreier R et al (2014) A continuous-time 0–3 MASH ADC achieving 88 dB DR with 53 MHz BW in 28 nm CMOS. IEEE J Solid-State Circuits 49:2868–2877CrossRef Dong Y, Yang W, Schreier R et al (2014) A continuous-time 0–3 MASH ADC achieving 88 dB DR with 53 MHz BW in 28 nm CMOS. IEEE J Solid-State Circuits 49:2868–2877CrossRef
339.
go back to reference Bolatkale M, Breems LJ, Rutten R, Makinwa KAA (2011) A 4 GHz continuous-time ADC with 70 dB DR and 74 dBFS THD in 125 MHz BW. IEEE J Solid-State Circuits 46:2857–2868CrossRef Bolatkale M, Breems LJ, Rutten R, Makinwa KAA (2011) A 4 GHz continuous-time ADC with 70 dB DR and 74 dBFS THD in 125 MHz BW. IEEE J Solid-State Circuits 46:2857–2868CrossRef
343.
go back to reference Shettigar P, Pavan S (2012) A 15 mW 3.6GS/s CT-SD ADC with 36 MHz bandwidth and 83 dB DR in 90 nm CMOS. In: International solid-state circuits conference, digest of technical papers, pp 156–157 Shettigar P, Pavan S (2012) A 15 mW 3.6GS/s CT-SD ADC with 36 MHz bandwidth and 83 dB DR in 90 nm CMOS. In: International solid-state circuits conference, digest of technical papers, pp 156–157
355.
go back to reference Schreier R, Abaskharoun N, Shibata H, Mehr I, Rose S, Paterson D (2006) A 375mW quadrature bandpass delta sigma ADC with 90dB DR and 8.5MHz BW at 44MHz. In: International solid-state circuits conference, digest of technical papers, pp 141–142 Schreier R, Abaskharoun N, Shibata H, Mehr I, Rose S, Paterson D (2006) A 375mW quadrature bandpass delta sigma ADC with 90dB DR and 8.5MHz BW at 44MHz. In: International solid-state circuits conference, digest of technical papers, pp 141–142
Metadata
Title
Quantization
Author
Marcel Pelgrom
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-44971-5_4