Skip to main content
Top

2025 | OriginalPaper | Chapter

Quantum Algorithms: Application and Feasibility

Authors : Duong Bui, Kimmo Halunen, Nhan Nguyen, Juha Röning

Published in: Product-Focused Software Process Improvement. Industry-, Workshop-, and Doctoral Symposium Papers

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we evaluate the feasibility of quantum algorithms for practical applications and categorize them into three types: green, yellow, and red. Green means the most feasible, while red means the least feasible. We select four quantum algorithms from the Algebraic and Number Theoretic fields, four from the Optimization field, six from the Machine Learning field, and four from the Oracular field to assess their feasibility. Our results show that some quantum algorithms can be applied to solve real-life problems in the near future, while other fields may take a long time to be practically applied. The feasibility assessment is obtained by considering whether there are requirements in the quantum algorithms that are hard to satisfy with current quantum technologies and predicting how much time it will require for those requirements to be satisfied in the future. We also provide a table summarizing the feasibility evaluation results of these quantum algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Anguita, D., Ridella, S., Rivieccio, F., Zunino, R.: Quantum optimization for training support vector machines. Neural Netw. 16, 763–770 (2003)CrossRef Anguita, D., Ridella, S., Rivieccio, F., Zunino, R.: Quantum optimization for training support vector machines. Neural Netw. 16, 763–770 (2003)CrossRef
2.
go back to reference Barz, S., et al.: A two-qubit photonic quantum processor and its application to solving systems of linear equations. Sci. Rep. 4, 6115 (2014)CrossRef Barz, S., et al.: A two-qubit photonic quantum processor and its application to solving systems of linear equations. Sci. Rep. 4, 6115 (2014)CrossRef
3.
go back to reference Baskaran, N., et al.: Adapting the Harrow-Hassidim-Lloyd algorithm to quantum many-body theory. Phys. Rev. Res. 5, 043113 (2023)CrossRef Baskaran, N., et al.: Adapting the Harrow-Hassidim-Lloyd algorithm to quantum many-body theory. Phys. Rev. Res. 5, 043113 (2023)CrossRef
4.
go back to reference Bavdekar, R., Chopde, E.J., Bhatia, A., Tiwari, K., Daniel, S.J., Atul: Post quantum cryptography: techniques, challenges, standardization, and directions for future research. Technical report, arXiv (2022) Bavdekar, R., Chopde, E.J., Bhatia, A., Tiwari, K., Daniel, S.J., Atul: Post quantum cryptography: techniques, challenges, standardization, and directions for future research. Technical report, arXiv (2022)
5.
go back to reference Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. (1997) Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. (1997)
6.
go back to reference Blekos, K., et al.: A review on quantum approximate optimization algorithm and its variants. Phys. Rep. 1068, 1–66 (2024)MathSciNetCrossRef Blekos, K., et al.: A review on quantum approximate optimization algorithm and its variants. Phys. Rep. 1068, 1–66 (2024)MathSciNetCrossRef
7.
go back to reference Cai, X.D., et al.: Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 110, 230501 (2013)CrossRef Cai, X.D., et al.: Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 110, 230501 (2013)CrossRef
8.
go back to reference Castelvecchi, D.: IBM releases first-ever 1,000-qubit quantum chip. Technical report., Nature (2023) Castelvecchi, D.: IBM releases first-ever 1,000-qubit quantum chip. Technical report., Nature (2023)
9.
go back to reference Chen, S., Cotler, J., Huang, H.Y., Li, J.: The complexity of NISQ. Technical report., arXiv (2022) Chen, S., Cotler, J., Huang, H.Y., Li, J.: The complexity of NISQ. Technical report., arXiv (2022)
10.
go back to reference Chen, Y.: Quantum algorithms for lattice problems. Technical report, Cryptology ePrint Archive (2024) Chen, Y.: Quantum algorithms for lattice problems. Technical report, Cryptology ePrint Archive (2024)
11.
go back to reference Collins, D., Kim, K.W., Holton, W.C.: Deutsch-Jozsa algorithm as a test of quantum computation. Phys. Rev. A 58, R1633 (1998) Collins, D., Kim, K.W., Holton, W.C.: Deutsch-Jozsa algorithm as a test of quantum computation. Phys. Rev. A 58, R1633 (1998)
12.
go back to reference Dervovic, D., Herbster, M., Mountney, P., Severini, S., Usher, N., Wossnig, L.: Quantum linear systems algorithms: a primer. Technical report, arXiv (2018) Dervovic, D., Herbster, M., Mountney, P., Severini, S., Usher, N., Wossnig, L.: Quantum linear systems algorithms: a primer. Technical report, arXiv (2018)
13.
go back to reference Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. London. Ser. A: Math. Phys. Sci. 439, 553–558 (1992) Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. London. Ser. A: Math. Phys. Sci. 439, 553–558 (1992)
14.
go back to reference DiAdamo, S., O’Meara, C., Cortiana, G., Bernabé-Moreno, J.: Practical quantum k-means clustering: performance analysis and applications in energy grid classification. IEEE Trans. Quantum Eng. 3, 1–16 (2022)CrossRef DiAdamo, S., O’Meara, C., Cortiana, G., Bernabé-Moreno, J.: Practical quantum k-means clustering: performance analysis and applications in energy grid classification. IEEE Trans. Quantum Eng. 3, 1–16 (2022)CrossRef
16.
go back to reference Du, S.L., Santana, S.H., Scarpa, G.: A gentle introduction to quantum natural language processing. Technical report, arXiv (2022) Du, S.L., Santana, S.H., Scarpa, G.: A gentle introduction to quantum natural language processing. Technical report, arXiv (2022)
18.
go back to reference Gidney, C., Ekerå, M.: How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum (2021) Gidney, C., Ekerå, M.: How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum (2021)
19.
go back to reference Grimsley, H.R., Barron, G.S., Barnes, E., Economou, S.E., Mayhall, N.J.: Adaptive, problem-tailored variational quantum eigensolver mitigates rough parameter landscapes and barren plateaus. NPJ Quantum Inf. 9, 19 (2023)CrossRef Grimsley, H.R., Barron, G.S., Barnes, E., Economou, S.E., Mayhall, N.J.: Adaptive, problem-tailored variational quantum eigensolver mitigates rough parameter landscapes and barren plateaus. NPJ Quantum Inf. 9, 19 (2023)CrossRef
20.
go back to reference Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (1996) Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (1996)
21.
go back to reference Guerreschi, G.G., Matsuura, A.Y.: QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Sci. Rep. 9, 6903 (2019)CrossRef Guerreschi, G.G., Matsuura, A.Y.: QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Sci. Rep. 9, 6903 (2019)CrossRef
22.
go back to reference Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)MathSciNetCrossRef Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)MathSciNetCrossRef
23.
go back to reference Herman, D., et al.: A survey of quantum computing for finance. Technical report, arXiv (2022) Herman, D., et al.: A survey of quantum computing for finance. Technical report, arXiv (2022)
24.
go back to reference Hidary, J.D.: A Brief History of Quantum Computing, chap. 2. Springer, Cham (2019) Hidary, J.D.: A Brief History of Quantum Computing, chap. 2. Springer, Cham (2019)
25.
go back to reference Huang, H.Y., Bharti, K., Rebentrost, P.: Near-term quantum algorithms for linear systems of equations. Technical report, arXiv (2019) Huang, H.Y., Bharti, K., Rebentrost, P.: Near-term quantum algorithms for linear systems of equations. Technical report, arXiv (2019)
27.
go back to reference Jiang, S., Qin, S., Pulsipher, J.L., Zavala, V.M.: Convolutional neural networks: basic concepts and applications in manufacturing. Technical report, arXiv (2022) Jiang, S., Qin, S., Pulsipher, J.L., Zavala, V.M.: Convolutional neural networks: basic concepts and applications in manufacturing. Technical report, arXiv (2022)
30.
go back to reference Kariya, A., Behera, B.K.: Investigation of quantum support vector machine for classification in NISQ era. Technical report, arXiv (2021) Kariya, A., Behera, B.K.: Investigation of quantum support vector machine for classification in NISQ era. Technical report, arXiv (2021)
31.
go back to reference Katabarwa, A., Gratsea, K., Caesura, A., Johnson, P.D.: Early fault-tolerant quantum computing. PRX Quantum (2024) Katabarwa, A., Gratsea, K., Caesura, A., Johnson, P.D.: Early fault-tolerant quantum computing. PRX Quantum (2024)
32.
go back to reference Khan, S.U., Awan, A.J., Vall-Llosera, G.: K-means clustering on noisy intermediate scale quantum computers. Technical report, arXiv (2019) Khan, S.U., Awan, A.J., Vall-Llosera, G.: K-means clustering on noisy intermediate scale quantum computers. Technical report, arXiv (2019)
33.
34.
go back to reference Kopczyk, D.: Quantum machine learning for data scientists. Technical report, arXiv (2018) Kopczyk, D.: Quantum machine learning for data scientists. Technical report, arXiv (2018)
35.
go back to reference Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors faster using quantum search. Des. Codes Cryptogr. 77, 375–400 (2015)MathSciNetCrossRef Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors faster using quantum search. Des. Codes Cryptogr. 77, 375–400 (2015)MathSciNetCrossRef
36.
go back to reference Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014)CrossRef Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014)CrossRef
37.
go back to reference Lorenz, R., Pearson, A., Meichanetzidis, K., Kartsaklis, D., Coecke, B.: QNLP in practice: running compositional models of meaning on a quantum computer. J. Artif. Intell. Res. 76, 1305–1342 (2023)MathSciNetCrossRef Lorenz, R., Pearson, A., Meichanetzidis, K., Kartsaklis, D., Coecke, B.: QNLP in practice: running compositional models of meaning on a quantum computer. J. Artif. Intell. Res. 76, 1305–1342 (2023)MathSciNetCrossRef
38.
go back to reference Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. Technical report, arXiv (2024) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. Technical report, arXiv (2024)
39.
go back to reference Niroula, P., et al.: Constrained quantum optimization for extractive summarization on a trapped-ion quantum computer. Sci. Rep. 12, 17171 (2022)CrossRef Niroula, P., et al.: Constrained quantum optimization for extractive summarization on a trapped-ion quantum computer. Sci. Rep. 12, 17171 (2022)CrossRef
41.
go back to reference O’Shea, K., Nash, R.: An introduction to convolutional neural networks. Technical report, arXiv (2015) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. Technical report, arXiv (2015)
42.
go back to reference Park, J., Heo, J.: Quantum linear system algorithm applied to communication systems. Quantum Inf. Process. 21, 267 (2022)MathSciNetCrossRef Park, J., Heo, J.: Quantum linear system algorithm applied to communication systems. Quantum Inf. Process. 21, 267 (2022)MathSciNetCrossRef
45.
go back to reference Ramezani, S.B., Sommers, A., Manchukonda, H.K., Rahimi, S., Amirlatifi, A.: Machine learning algorithms in quantum computing: a survey. In: 2020 International Joint Conference on Neural Networks (IJCNN) (2020) Ramezani, S.B., Sommers, A., Manchukonda, H.K., Rahimi, S., Amirlatifi, A.: Machine learning algorithms in quantum computing: a survey. In: 2020 International Joint Conference on Neural Networks (IJCNN) (2020)
46.
go back to reference Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)CrossRef Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)CrossRef
48.
go back to reference Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRef Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRef
50.
go back to reference Simon, D.R.: On the power of quantum computation. In: Proceedings 35th Annual Symposium on Foundations of Computer Science (1994) Simon, D.R.: On the power of quantum computation. In: Proceedings 35th Annual Symposium on Foundations of Computer Science (1994)
51.
go back to reference Tilly, J., et al.: The variational quantum eigensolver: a review of methods and best practices. Phys. Rep. 986, 1–128 (2022)MathSciNetCrossRef Tilly, J., et al.: The variational quantum eigensolver: a review of methods and best practices. Phys. Rep. 986, 1–128 (2022)MathSciNetCrossRef
52.
go back to reference Upadhya, V., Sastry, P.S.: An overview of Restricted Boltzmann Machines. J. Indian Inst. Sci. 99(2019), 225–236 (2019)CrossRef Upadhya, V., Sastry, P.S.: An overview of Restricted Boltzmann Machines. J. Indian Inst. Sci. 99(2019), 225–236 (2019)CrossRef
53.
go back to reference Wei, S., Chen, Y., Zhou, Z., Long, G.: A quantum convolutional neural network on NISQ devices. Technical report, arXiv (2021) Wei, S., Chen, Y., Zhou, Z., Long, G.: A quantum convolutional neural network on NISQ devices. Technical report, arXiv (2021)
54.
go back to reference Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109, 050505 (2012)CrossRef Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109, 050505 (2012)CrossRef
55.
go back to reference Yarkoni, S., Raponi, E., Bäck, T., Schmitt, S.: Quantum annealing for industry applications: introduction and review. Rep. Prog. Phys. 85, 104001 (2022)MathSciNetCrossRef Yarkoni, S., Raponi, E., Bäck, T., Schmitt, S.: Quantum annealing for industry applications: introduction and review. Rep. Prog. Phys. 85, 104001 (2022)MathSciNetCrossRef
Metadata
Title
Quantum Algorithms: Application and Feasibility
Authors
Duong Bui
Kimmo Halunen
Nhan Nguyen
Juha Röning
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-78392-0_10

Premium Partner