Skip to main content
Top
Published in:

21-01-2019

Quantum-Behaved Particle Swarm Optimization for Parameter Optimization of Support Vector Machine

Authors: Alaa Tharwat, Aboul Ella Hassanien

Published in: Journal of Classification | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Support vector machine (SVM) parameters such as penalty parameter and kernel parameters have a great influence on the complexity and accuracy of SVM model. In this paper, quantum-behaved particle swarm optimization (QPSO) has been employed to optimize the parameters of SVM, so that the classification error can be reduced. To evaluate the proposed model (QPSO-SVM), the experiment adopted seven standard classification datasets which are obtained from UCI machine learning data repository. For verification, the results of the QPSO-SVM algorithm are compared with the standard PSO, and genetic algorithm (GA) which is one of the well-known optimization algorithms. Moreover, the results of QPSO are compared with the grid search, which is a conventional method of searching parameter values. The experimental results demonstrated that the proposed model is capable to find the optimal values of the SVM parameters. The results also showed lower classification error rates compared with standard PSO and GA algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
This content is only visible if you are logged in and have the appropriate permissions.
Metadata
Title
Quantum-Behaved Particle Swarm Optimization for Parameter Optimization of Support Vector Machine
Authors
Alaa Tharwat
Aboul Ella Hassanien
Publication date
21-01-2019
Publisher
Springer US
Published in
Journal of Classification / Issue 3/2019
Print ISSN: 0176-4268
Electronic ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-018-9299-1

Premium Partner