Skip to main content
Top
Published in: Quantum Information Processing 4/2021

01-04-2021

Quantum Bell states-based anonymous voting with anonymity trace

Authors: Qingle Wang, Jiangshan Liu, Yuancheng Li, Chaohang Yu, Shijie Pan

Published in: Quantum Information Processing | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Anonymous voting is widely used in economic and social activities, whenever it requires to express opinions privately and fairly. In this paper, we consider the task of anonymous voting using quantum mechanics. Based on quantum Bell states, anonymous entanglement is established between each voter and a tallier; thus, employing the one-time pad technique, each voter can privately cast his/her vote to the tallier. The tallier provides a mechanism of opening and permuting the ordered votes of all voters in an anonymous manner. With the distribution of all counted votes, the voting results can be obtained through a simple calculation. By a private address index, each voter can anonymously trace his/her counted vote, leading to verifiability. Following the practical requirements, the quantum anonymous voting protocol satisfies privacy, non-reusability and verifiability at the same time. Under the ideal conditions, the security concerning some common attacks is given in detail, and the theoretical analysis states that this protocol is secure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computer, Systems Signal Processing, pp. 1–7, Bangalore (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computer, Systems Signal Processing, pp. 1–7, Bangalore (1984)
2.
go back to reference Lo, H., Chau, H., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005)MathSciNetMATHCrossRef Lo, H., Chau, H., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005)MathSciNetMATHCrossRef
3.
go back to reference Gottesman, D., Hoi-Kwong, L.: Proof of security of quantum key distribution with two-way classical communications. IEEE Trans. Inf. Theory 49(2), 457–475 (2003)MathSciNetMATHCrossRef Gottesman, D., Hoi-Kwong, L.: Proof of security of quantum key distribution with two-way classical communications. IEEE Trans. Inf. Theory 49(2), 457–475 (2003)MathSciNetMATHCrossRef
4.
go back to reference Horodecki, K., Horodecki, M., Horodecki, P., Leung, D., Oppenheim, J.: Quantum key distribution based on private states: unconditional security over untrusted channels with zero quantum capacity. IEEE Trans. Inf. Theory 54(6), 2604–2620 (2008)MathSciNetMATHCrossRef Horodecki, K., Horodecki, M., Horodecki, P., Leung, D., Oppenheim, J.: Quantum key distribution based on private states: unconditional security over untrusted channels with zero quantum capacity. IEEE Trans. Inf. Theory 54(6), 2604–2620 (2008)MathSciNetMATHCrossRef
5.
go back to reference Xiao, L., Deng, F.G., Long, G.L., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)ADSCrossRef Xiao, L., Deng, F.G., Long, G.L., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)ADSCrossRef
6.
go back to reference Zhang, K.J., Zhang, X., Jia, H.Y., Zhang, L.: A new n-party quantum secret sharing model based on multiparty entangled states. Quantum Inf. Process. 18, 81 (2019)ADSMathSciNetMATHCrossRef Zhang, K.J., Zhang, X., Jia, H.Y., Zhang, L.: A new n-party quantum secret sharing model based on multiparty entangled states. Quantum Inf. Process. 18, 81 (2019)ADSMathSciNetMATHCrossRef
7.
go back to reference Yang, Y.G., Gao, S., Li, D., Zhou, Y.H., Shi, W.M.: Three-party quantum secret sharing against collective noise. Quantum Inf. Process. 18, 215 (2019)ADSMathSciNetCrossRef Yang, Y.G., Gao, S., Li, D., Zhou, Y.H., Shi, W.M.: Three-party quantum secret sharing against collective noise. Quantum Inf. Process. 18, 215 (2019)ADSMathSciNetCrossRef
8.
9.
go back to reference Wang, P., Sun, Z.W., Sun, X.Q.: Multi-party quantum key agreement protocol secure against collusion attacks. Quantum Inf. Process. 16, 170 (2017)ADSMathSciNetMATHCrossRef Wang, P., Sun, Z.W., Sun, X.Q.: Multi-party quantum key agreement protocol secure against collusion attacks. Quantum Inf. Process. 16, 170 (2017)ADSMathSciNetMATHCrossRef
10.
go back to reference Jiang, D.H., Xu, G.B.: Multiparty quantum key agreement protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 17, 180 (2018)ADSMathSciNetMATHCrossRef Jiang, D.H., Xu, G.B.: Multiparty quantum key agreement protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 17, 180 (2018)ADSMathSciNetMATHCrossRef
11.
go back to reference Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)ADSCrossRef Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)ADSCrossRef
12.
go back to reference Yang, Y.G., Lei, H., Liu, Z.C., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15, 2487–2497 (2016)ADSMathSciNetMATHCrossRef Yang, Y.G., Lei, H., Liu, Z.C., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15, 2487–2497 (2016)ADSMathSciNetMATHCrossRef
13.
15.
go back to reference Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocol. Sci. China Ser. G 62(7), 070301 (2019)CrossRef Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocol. Sci. China Ser. G 62(7), 070301 (2019)CrossRef
16.
go back to reference Wei, C.Y., Cai, X.Q., Liu, B., Wang, T.Y., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2018)MathSciNetMATHCrossRef Wei, C.Y., Cai, X.Q., Liu, B., Wang, T.Y., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2018)MathSciNetMATHCrossRef
17.
go back to reference Shi, R.H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6(1), 19655 (2016)ADSCrossRef Shi, R.H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6(1), 19655 (2016)ADSCrossRef
18.
go back to reference Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with \(n\)-level entangled states. Quantum Inf. Process. 13(11), 2375–2389 (2014)ADSMathSciNetCrossRef Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with \(n\)-level entangled states. Quantum Inf. Process. 13(11), 2375–2389 (2014)ADSMathSciNetCrossRef
19.
go back to reference Cao, H., Ma, W.P., Lü, L.D., He, Y.F., Liu, G.: Multi-party quantum privacy comparison of size based on \(d\)-level GHZ states. Quantum Inf. Process. 18, 287 (2019)ADSMathSciNetCrossRef Cao, H., Ma, W.P., Lü, L.D., He, Y.F., Liu, G.: Multi-party quantum privacy comparison of size based on \(d\)-level GHZ states. Quantum Inf. Process. 18, 287 (2019)ADSMathSciNetCrossRef
20.
go back to reference Fuchs, C.A., Graaf, J.V.D.: Cryptographic distinguishability measures for quantum mechanical states. IEEE Trans. Inf. Theory 45(4), 1216–1227 (1999)MathSciNetMATHCrossRef Fuchs, C.A., Graaf, J.V.D.: Cryptographic distinguishability measures for quantum mechanical states. IEEE Trans. Inf. Theory 45(4), 1216–1227 (1999)MathSciNetMATHCrossRef
22.
go back to reference Cederlof, J., Larsson, J.: Security aspects of the authentication used in quantum cryptography. IEEE Trans. Inf. Theory 54(4), 1735–1741 (2008)MathSciNetMATHCrossRef Cederlof, J., Larsson, J.: Security aspects of the authentication used in quantum cryptography. IEEE Trans. Inf. Theory 54(4), 1735–1741 (2008)MathSciNetMATHCrossRef
23.
go back to reference Dupuis, F., Hayden, P., Li, K.: A father protocol for quantum broadcast channels. IEEE Trans. Inf. Theory 56(6), 2946–2956 (2010)MathSciNetMATHCrossRef Dupuis, F., Hayden, P., Li, K.: A father protocol for quantum broadcast channels. IEEE Trans. Inf. Theory 56(6), 2946–2956 (2010)MathSciNetMATHCrossRef
24.
go back to reference Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)ADSCrossRef Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)ADSCrossRef
25.
go back to reference Christandl, M., Wehner, S.: Quantum anonymous transmissions. In Proc. Asiacrypt 05: 11th International Conference on the Theory and Application of Cryptology and Information Security, vol. 3788, pp. 217–235. Springer, Berlin (2005) Christandl, M., Wehner, S.: Quantum anonymous transmissions. In Proc. Asiacrypt 05: 11th International Conference on the Theory and Application of Cryptology and Information Security, vol. 3788, pp. 217–235. Springer, Berlin (2005)
26.
go back to reference Hillery, M., Ziman, M., Bužek, V., Bieliková, M.: Towards quantum-based privacy and voting. Phys. Lett. A 349(1–4), 5–81 (2006)MATH Hillery, M., Ziman, M., Bužek, V., Bieliková, M.: Towards quantum-based privacy and voting. Phys. Lett. A 349(1–4), 5–81 (2006)MATH
27.
go back to reference Li, Y., Zeng, G.: Quantum anonymous voting systems based on entangled state. Opt. Rev. 15(5), 219–223 (2008)CrossRef Li, Y., Zeng, G.: Quantum anonymous voting systems based on entangled state. Opt. Rev. 15(5), 219–223 (2008)CrossRef
28.
go back to reference Horoshko, D., Kilin, S.: Quantum anonymous voting with anonymity trace. Phys. Lett. A 375(8), 1172–1175 (2009)ADSMATHCrossRef Horoshko, D., Kilin, S.: Quantum anonymous voting with anonymity trace. Phys. Lett. A 375(8), 1172–1175 (2009)ADSMATHCrossRef
29.
go back to reference Bonanome, M., Bužek, V., Hillery, M., Ziman, M.: Toward protocols for quantum-ensured privacy and secure voting. Phys. Rev. A 84, 022331 (2011)ADSCrossRef Bonanome, M., Bužek, V., Hillery, M., Ziman, M.: Toward protocols for quantum-ensured privacy and secure voting. Phys. Rev. A 84, 022331 (2011)ADSCrossRef
30.
go back to reference Jiang, L., He, G., Nie, D., Xiong, J., Zeng, G.H.: Quantum anonymous voting for continuous variables. Phys. Rev. A 85(4), 9335–9340 (2012)CrossRef Jiang, L., He, G., Nie, D., Xiong, J., Zeng, G.H.: Quantum anonymous voting for continuous variables. Phys. Rev. A 85(4), 9335–9340 (2012)CrossRef
31.
go back to reference Wang, Q., Yu, C., Gao, F., Qi, H.Y., Wen, Q.Y.: Self-tallying quantum anonymous voting. Phys. Rev. A 94(2), 022333 (2016)ADSCrossRef Wang, Q., Yu, C., Gao, F., Qi, H.Y., Wen, Q.Y.: Self-tallying quantum anonymous voting. Phys. Rev. A 94(2), 022333 (2016)ADSCrossRef
32.
go back to reference Wang, Y.W.: Quantum voting protocols based on the non-symmetric quantum channel with controlled quantum operation teleportation. Acta Phys. Sin. 62(16), 581–586 (2013) Wang, Y.W.: Quantum voting protocols based on the non-symmetric quantum channel with controlled quantum operation teleportation. Acta Phys. Sin. 62(16), 581–586 (2013)
33.
go back to reference Guo, Y., Feng, Y.Y., Zeng, G.H.: Quantum anonymous voting with unweighted continuous-variable graph states. Quantum Inf. Process. 15, 3327–3345 (2019)ADSMathSciNetMATHCrossRef Guo, Y., Feng, Y.Y., Zeng, G.H.: Quantum anonymous voting with unweighted continuous-variable graph states. Quantum Inf. Process. 15, 3327–3345 (2019)ADSMathSciNetMATHCrossRef
34.
go back to reference Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55(5), 2303–2310 (2016)MathSciNetMATHCrossRef Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55(5), 2303–2310 (2016)MathSciNetMATHCrossRef
35.
go back to reference Xue, P., Zhang, X.: A simple quantum voting scheme with multi-qubit entanglement. Sci. Rep. 7, 7586 (2017)ADSCrossRef Xue, P., Zhang, X.: A simple quantum voting scheme with multi-qubit entanglement. Sci. Rep. 7, 7586 (2017)ADSCrossRef
36.
38.
go back to reference Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, USA, pp. 136–145 (2001) Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, USA, pp. 136–145 (2001)
39.
go back to reference Unruh, D.: Universally composable quantum multi-party computation. Lecture Notes Comput Science pp. 486–505 (2010) Unruh, D.: Universally composable quantum multi-party computation. Lecture Notes Comput Science pp. 486–505 (2010)
40.
41.
go back to reference Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium, vol. 17 (2008) Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium, vol. 17 (2008)
42.
go back to reference Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the standard model. In: Proceedings of the 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, Berlin (2015) Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the standard model. In: Proceedings of the 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, Berlin (2015)
43.
go back to reference Ryan, P.Y., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a voter-verifiable voting system. IEEE Trans. Inf. Forensic Security 4(4), 662–673 (2010)CrossRef Ryan, P.Y., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a voter-verifiable voting system. IEEE Trans. Inf. Forensic Security 4(4), 662–673 (2010)CrossRef
44.
go back to reference Cortier, V., Galindo, D., Küsters, R., Muller, J., Truderung, T.: Sok: verifiability notions for e-voting protocols. In: Proceedings of the IEEE Symposium on Security and Privacy, USA, pp. 779–798 (2016) Cortier, V., Galindo, D., Küsters, R., Muller, J., Truderung, T.: Sok: verifiability notions for e-voting protocols. In: Proceedings of the IEEE Symposium on Security and Privacy, USA, pp. 779–798 (2016)
45.
go back to reference Gritzalis, D.A.: Principles and requirements for a secure e-voting system. Comput. Security 21(6), 539–556 (2002)CrossRef Gritzalis, D.A.: Principles and requirements for a secure e-voting system. Comput. Security 21(6), 539–556 (2002)CrossRef
46.
47.
go back to reference Zhou, N.R., Wang, L.J., Ding, J., Gong, L.H.: Quantum deterministic key distribution protocols based on the authenticated entanglement channel. Phys. Scr. 81(4), 045009 (2010)ADSMATHCrossRef Zhou, N.R., Wang, L.J., Ding, J., Gong, L.H.: Quantum deterministic key distribution protocols based on the authenticated entanglement channel. Phys. Scr. 81(4), 045009 (2010)ADSMATHCrossRef
49.
go back to reference Guo, F.Z., Gao, F., Qin, S.J., Zhang, J., Wen, Q.Y.: Quantum private comparison protocol based on entanglement swapping of \(d\)-level Bell states. Quantum Inf. Process. 12, 2793–2802 (2013)ADSMathSciNetCrossRef Guo, F.Z., Gao, F., Qin, S.J., Zhang, J., Wen, Q.Y.: Quantum private comparison protocol based on entanglement swapping of \(d\)-level Bell states. Quantum Inf. Process. 12, 2793–2802 (2013)ADSMathSciNetCrossRef
50.
go back to reference Liu, W., Wang, Y., Wang, X.: Quantum multi-party private comparison protocol using d-dimensional Bell states. Int. J. Theor. Phys. 54, 1830–1839 (2015)MathSciNetMATHCrossRef Liu, W., Wang, Y., Wang, X.: Quantum multi-party private comparison protocol using d-dimensional Bell states. Int. J. Theor. Phys. 54, 1830–1839 (2015)MathSciNetMATHCrossRef
51.
go back to reference Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)ADSCrossRef Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)ADSCrossRef
54.
go back to reference Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the brádler-duěk protocol. Quantum Inf. Comput. 7(4), 329 (2007)MathSciNetMATH Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the brádler-duěk protocol. Quantum Inf. Comput. 7(4), 329 (2007)MathSciNetMATH
Metadata
Title
Quantum Bell states-based anonymous voting with anonymity trace
Authors
Qingle Wang
Jiangshan Liu
Yuancheng Li
Chaohang Yu
Shijie Pan
Publication date
01-04-2021
Publisher
Springer US
Published in
Quantum Information Processing / Issue 4/2021
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-03081-5

Other articles of this Issue 4/2021

Quantum Information Processing 4/2021 Go to the issue