Skip to main content
Top

2024 | OriginalPaper | Chapter

Quantum Codes Over an Extension of \({\mathbb {Z}_4}\)

Authors : Mohammad Ashraf, Naim Khan, Washiqur Rehman, Ghulam Mohammad

Published in: Advances in Ring Theory and Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let \(\mathfrak {A}=\mathbb Z_4+u\mathbb Z_4+v\mathbb Z_4,\) where \(u^2=u\), \(v^2=v\) and \(uv=vu=0\) be a ring, which is an extension of \(\mathbb {Z}_{4}\). In this article, we study the structure of cyclic codes over the ring \(\mathfrak {A}\) and define a \(\mathbb Z_2\)-linear isometry \(\Phi \) from \(\mathfrak {A}^{n}\) to \(\mathbb Z^{6n}_2.\) Based on the classical cyclic codes, we construct binary quantum codes by utilizing Gray images of cyclic codes over \(\mathfrak {A}\). As an application, we provide some examples of binary quantum error-correcting codes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abualrub, T., Siap, I.: Reversible cyclic codes over \(\mathbb{Z} _4\). Australas. J. Combin. 38, 195–205 (2007)MathSciNet Abualrub, T., Siap, I.: Reversible cyclic codes over \(\mathbb{Z} _4\). Australas. J. Combin. 38, 195–205 (2007)MathSciNet
2.
go back to reference Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Springer Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Springer
3.
4.
go back to reference Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \({\mathbb{F}}_3+v{\mathbb{F}}_3\). Int. J. Quantum Inf. 12(6) (2014) Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \({\mathbb{F}}_3+v{\mathbb{F}}_3\). Int. J. Quantum Inf. 12(6) (2014)
5.
go back to reference Ashraf, M., Mohammad, G.: Construction of quantum codes from cyclic codes over \(\mathbb{F} _p+v\mathbb{F} _p\). Int. J. Inf. Coding Theory 3(2), 137–144 (2015)MathSciNet Ashraf, M., Mohammad, G.: Construction of quantum codes from cyclic codes over \(\mathbb{F} _p+v\mathbb{F} _p\). Int. J. Inf. Coding Theory 3(2), 137–144 (2015)MathSciNet
6.
go back to reference Ashraf, M., Mohammad, G.: Skew cyclic codes over \({\mathbb{F}}_{q}+u{\mathbb{F}}_{q}+v{\mathbb{F}}_{q}\). Asian-Eur. J. Math. 11(5), (2018) Ashraf, M., Mohammad, G.: Skew cyclic codes over \({\mathbb{F}}_{q}+u{\mathbb{F}}_{q}+v{\mathbb{F}}_{q}\). Asian-Eur. J. Math. 11(5), (2018)
7.
go back to reference Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \(\mathbb{F} _{q}+u\mathbb{F} _{q}+v\mathbb{F} _{q}+uv\mathbb{F} _{q}\). Quantum Inf. Process 15(10), 4089–4098 (2016)MathSciNetCrossRef Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \(\mathbb{F} _{q}+u\mathbb{F} _{q}+v\mathbb{F} _{q}+uv\mathbb{F} _{q}\). Quantum Inf. Process 15(10), 4089–4098 (2016)MathSciNetCrossRef
8.
go back to reference Ashraf, M., Mohammad, G.: Quantum codes over \(\mathbb{F} _p\) from cyclic codes over \(\mathbb{F} _p[u, v]/\langle u^2-1, v^3-v, uv-vu\rangle \). Cryptogr. Commun. 11, 325–335 (2019)MathSciNetCrossRef Ashraf, M., Mohammad, G.: Quantum codes over \(\mathbb{F} _p\) from cyclic codes over \(\mathbb{F} _p[u, v]/\langle u^2-1, v^3-v, uv-vu\rangle \). Cryptogr. Commun. 11, 325–335 (2019)MathSciNetCrossRef
9.
go back to reference Ashraf, M., Khan, N., Mohammad, G.: New quantum and LCD codes over finite field of odd characteristic. Internat. J. Theoret. Phys 60(6), 2322–2332 (2021)MathSciNetCrossRef Ashraf, M., Khan, N., Mohammad, G.: New quantum and LCD codes over finite field of odd characteristic. Internat. J. Theoret. Phys 60(6), 2322–2332 (2021)MathSciNetCrossRef
11.
go back to reference Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symb. Comput. 24, 235–265 (1997)MathSciNetCrossRef Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symb. Comput. 24, 235–265 (1997)MathSciNetCrossRef
12.
go back to reference Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error-correction via codes over \(GF(4)\). IEEE Trans. Inform. Theory 44, 1369–1387 (1998)MathSciNetCrossRef Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error-correction via codes over \(GF(4)\). IEEE Trans. Inform. Theory 44, 1369–1387 (1998)MathSciNetCrossRef
13.
go back to reference Dertli, A., Cengellenmis, Y., Eren, S.: On quantum codes obtained from cyclic codes over \(A_2\). Int. J. Quantum Inf. 13(3), (2015) Dertli, A., Cengellenmis, Y., Eren, S.: On quantum codes obtained from cyclic codes over \(A_2\). Int. J. Quantum Inf. 13(3), (2015)
14.
go back to reference Dertli, A., Cengellenmis, Y.: On the codes over the ring \({\mathbb{Z} }_4+u{\mathbb{Z} }_4+v{\mathbb{Z} }_4\) cyclic, constacyclic, quasi-cyclic codes, their skew codes, cyclic DNA and skew cyclic DNA codes. Prespacetime J. 10(2), 196–213 (2019) Dertli, A., Cengellenmis, Y.: On the codes over the ring \({\mathbb{Z} }_4+u{\mathbb{Z} }_4+v{\mathbb{Z} }_4\) cyclic, constacyclic, quasi-cyclic codes, their skew codes, cyclic DNA and skew cyclic DNA codes. Prespacetime J. 10(2), 196–213 (2019)
16.
go back to reference Dinh, H.Q., Kumar, N., Singh, A.K.: A study of quantum codes obtained from cyclic codes over a non? Chain Ring Cryptogr, Commun (2022) Dinh, H.Q., Kumar, N., Singh, A.K.: A study of quantum codes obtained from cyclic codes over a non? Chain Ring Cryptogr, Commun (2022)
17.
go back to reference Gao, Y., Gao, J., Fu, F.W.: Quantum codes from cyclic codes over the ring \({\mathbb{F}}_q+v_{1}{\mathbb{F}}_q+...+v_{r}{\mathbb{F}}_q\). Appl. Algebra Eng. Comm. Comput. 30, 161–174 (2019) Gao, Y., Gao, J., Fu, F.W.: Quantum codes from cyclic codes over the ring \({\mathbb{F}}_q+v_{1}{\mathbb{F}}_q+...+v_{r}{\mathbb{F}}_q\). Appl. Algebra Eng. Comm. Comput. 30, 161–174 (2019)
18.
go back to reference Gao, J., Fu, F.W., Gao, Y.: Some classes of linear codes over \(\mathbb{Z} _4+v\mathbb{Z} _4\) and their application to construct good and new \(\mathbb{Z} _4\)-linear codes. Appl. Algebra Eng. Comm. Comput. 30, 131–153 (2017)CrossRef Gao, J., Fu, F.W., Gao, Y.: Some classes of linear codes over \(\mathbb{Z} _4+v\mathbb{Z} _4\) and their application to construct good and new \(\mathbb{Z} _4\)-linear codes. Appl. Algebra Eng. Comm. Comput. 30, 131–153 (2017)CrossRef
19.
go back to reference Gowdhaman, K., Mohan, C., Chinnapillai, D., Gao, J.: Construction of quantum code from \(\lambda \)-constacyclic codes over the ring \(\mathbb{F} _p[u, v]/\langle v^3-v, u^3-u, uv-vu\rangle \). J. Appl. Math. Comput. 65, 611–622 (2021)MathSciNetCrossRef Gowdhaman, K., Mohan, C., Chinnapillai, D., Gao, J.: Construction of quantum code from \(\lambda \)-constacyclic codes over the ring \(\mathbb{F} _p[u, v]/\langle v^3-v, u^3-u, uv-vu\rangle \). J. Appl. Math. Comput. 65, 611–622 (2021)MathSciNetCrossRef
20.
go back to reference Grassl, M., Beth, T.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 55–64 (2004)CrossRef Grassl, M., Beth, T.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 55–64 (2004)CrossRef
22.
go back to reference Guzeltepe, M., Sari, M.: Quantum codes from codes over the ring \({\mathbb{F}}_q+\alpha {\mathbb{F}}_q\). Quantum Inf. Process 18(12) (2019) Guzeltepe, M., Sari, M.: Quantum codes from codes over the ring \({\mathbb{F}}_q+\alpha {\mathbb{F}}_q\). Quantum Inf. Process 18(12) (2019)
23.
go back to reference Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Sole, P.: The \(Z_{4}\)- linearity of Kerdcck, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)MathSciNetCrossRef Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Sole, P.: The \(Z_{4}\)- linearity of Kerdcck, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)MathSciNetCrossRef
24.
go back to reference Huffman, W.C., Pless, V.: Fundamentals of Error-correcting Codes. Cambridge University Press (2010) Huffman, W.C., Pless, V.: Fundamentals of Error-correcting Codes. Cambridge University Press (2010)
25.
go back to reference Islam, I., Prakash, O.: New quantum and LCD codes over the finite field of even characteristic. Def. Sci. J. 71(5), 656–661 (2021)CrossRef Islam, I., Prakash, O.: New quantum and LCD codes over the finite field of even characteristic. Def. Sci. J. 71(5), 656–661 (2021)CrossRef
26.
go back to reference Islam, I., Prakash, O.: Quantum codes from the cyclic codes over \(\mathbb{F} _p[u, v, w]/\langle u^2-1, v^2-1, w^2-1, uv-vu, vw-wv, uw-wu\rangle \). J. Appl. Math. Comput. 60, 625–635 (2019)MathSciNetCrossRef Islam, I., Prakash, O.: Quantum codes from the cyclic codes over \(\mathbb{F} _p[u, v, w]/\langle u^2-1, v^2-1, w^2-1, uv-vu, vw-wv, uw-wu\rangle \). J. Appl. Math. Comput. 60, 625–635 (2019)MathSciNetCrossRef
29.
go back to reference Kai, X., Zhu, S.: Quaternary construction of quantum codes from cyclic codes over \(\mathbb{F} _4+u\mathbb{F} _4\). Int. J. Quantum Inf. 9, 689–700 (2011)MathSciNetCrossRef Kai, X., Zhu, S.: Quaternary construction of quantum codes from cyclic codes over \(\mathbb{F} _4+u\mathbb{F} _4\). Int. J. Quantum Inf. 9, 689–700 (2011)MathSciNetCrossRef
30.
32.
go back to reference Shor, P.W.: Polynomial time algorithms for prime factorization and discrete logarithms on a quantum Computer. SIAM J. Comput. 41(2), 303–332 (1995)MathSciNet Shor, P.W.: Polynomial time algorithms for prime factorization and discrete logarithms on a quantum Computer. SIAM J. Comput. 41(2), 303–332 (1995)MathSciNet
33.
go back to reference Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A. 52, 2493–2496 (1995)CrossRef Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A. 52, 2493–2496 (1995)CrossRef
34.
go back to reference Pless, V.S., Qian, Z.: Cyclic codes and quadratic residue codes over \(\mathbb{Z} _4\). IEEE Trans. Inform. Theory 42(5), 1594–1600 (1996)MathSciNetCrossRef Pless, V.S., Qian, Z.: Cyclic codes and quadratic residue codes over \(\mathbb{Z} _4\). IEEE Trans. Inform. Theory 42(5), 1594–1600 (1996)MathSciNetCrossRef
35.
go back to reference Thangaraj, A., McLaughlin, S.W.: Quantum codes from cyclic codes over \(GF(4^m)\). IEEE Trans. Inform. Theory 47(3), 1176–1178 (2001)MathSciNetCrossRef Thangaraj, A., McLaughlin, S.W.: Quantum codes from cyclic codes over \(GF(4^m)\). IEEE Trans. Inform. Theory 47(3), 1176–1178 (2001)MathSciNetCrossRef
36.
go back to reference Wolfmann, J.: Negacyclic and cyclic codes over \(\mathbb{Z} _4\). IEEE Trans. Inform. Theory 45(7), 2527–2532 (1999)MathSciNetCrossRef Wolfmann, J.: Negacyclic and cyclic codes over \(\mathbb{Z} _4\). IEEE Trans. Inform. Theory 45(7), 2527–2532 (1999)MathSciNetCrossRef
37.
go back to reference Wolfmann, J.: Binary images of cyclic codes over \(\mathbb{Z} _4\). IEEE Trans. Inform. Theory 47(5), 1773–1779 (2001)MathSciNetCrossRef Wolfmann, J.: Binary images of cyclic codes over \(\mathbb{Z} _4\). IEEE Trans. Inform. Theory 47(5), 1773–1779 (2001)MathSciNetCrossRef
38.
go back to reference Yildiz, B., Aydin, N.: On cyclic codes over \({\mathbb{Z}}_4+u{\mathbb{Z}} _4\) and their \({\mathbb{Z}}_4\) images. Int. J. Inf. Coding Theory 2(4) (2014) Yildiz, B., Aydin, N.: On cyclic codes over \({\mathbb{Z}}_4+u{\mathbb{Z}} _4\) and their \({\mathbb{Z}}_4\) images. Int. J. Inf. Coding Theory 2(4) (2014)
Metadata
Title
Quantum Codes Over an Extension of
Authors
Mohammad Ashraf
Naim Khan
Washiqur Rehman
Ghulam Mohammad
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50795-3_27

Premium Partner