Skip to main content
Top

2023 | OriginalPaper | Chapter

Quantum Data Management and Quantum Machine Learning for Data Management: State-of-the-Art and Open Challenges

Authors : Sven Groppe, Jinghua Groppe, Umut Çalıkyılmaz, Tobias Winker, Le Gruenwal

Published in: Intelligent Systems and Machine Learning

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum computing is an emerging technology and has yet to be exploited by industries to implement practical applications. Research has already laid the foundation for figuring out the benefits of quantum computing for these applications. In this paper, we provide a short overview of the state-of-the-art in data management issues that can be solved by quantum computers and especially by quantum machine learning approaches. Furthermore, we discuss what data management can do to support quantum computing and quantum machine learning.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We regard here quantum algorithms and quantum-inspired [50] algorithms as quantum counterparts, although quantum-inspired algorithm are designed to run on classical hardware, but are inspired from the quantum computing concept.
 
Literature
4.
go back to reference Akdere, M., Çetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: Learning-based query performance modeling and prediction. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 390–401. IEEE (2012) Akdere, M., Çetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: Learning-based query performance modeling and prediction. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 390–401. IEEE (2012)
7.
go back to reference Ambainis, A., Balodis, K., Iraids, J., Kokainis, M., Prūsis, K., Vihrovs, J.: Quantum speedups for exponential-time dynamic programming algorithms. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1783–1793. Society for Industrial and Applied Mathematics, January 2019. https://doi.org/10.1137/1.9781611975482.107 Ambainis, A., Balodis, K., Iraids, J., Kokainis, M., Prūsis, K., Vihrovs, J.: Quantum speedups for exponential-time dynamic programming algorithms. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1783–1793. Society for Industrial and Applied Mathematics, January 2019. https://​doi.​org/​10.​1137/​1.​9781611975482.​107
8.
12.
go back to reference Caro, M.C., et al.: Generalization in quantum machine learning from few training data. Nat. Commun. 13(1) (2022) Caro, M.C., et al.: Generalization in quantum machine learning from few training data. Nat. Commun. 13(1) (2022)
13.
go back to reference Chen, J., et al.: Efficient join order selection learning with graph-based representation. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2022, pp. 97–107. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3534678.3539303 Chen, J., et al.: Efficient join order selection learning with graph-based representation. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2022, pp. 97–107. Association for Computing Machinery, New York (2022). https://​doi.​org/​10.​1145/​3534678.​3539303
16.
go back to reference Colorni, A., Dorigo, M., Maniezzo, V., Varela, F.J., Bourgine, P.E.: Distributed optimization by ant colonies. In: Proceedings of the First European Conference on Artificial Life, pp. 134–142 (1991) Colorni, A., Dorigo, M., Maniezzo, V., Varela, F.J., Bourgine, P.E.: Distributed optimization by ant colonies. In: Proceedings of the First European Conference on Artificial Life, pp. 134–142 (1991)
21.
go back to reference Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRef Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRef
25.
go back to reference Galindo-Legaria, C.A., Pellenkoft, A., Kersten, M.L.: Fast, randomized join-order selection - why use transformations? In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB 1994, pp. 85–95. Morgan Kaufmann Publishers Inc., San Francisco (1994) Galindo-Legaria, C.A., Pellenkoft, A., Kersten, M.L.: Fast, randomized join-order selection - why use transformations? In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB 1994, pp. 85–95. Morgan Kaufmann Publishers Inc., San Francisco (1994)
26.
go back to reference Ganapathi, A., et al.: Predicting multiple metrics for queries: better decisions enabled by machine learning. In: 2009 IEEE 25th International Conference on Data Engineering, pp. 592–603. IEEE (2009) Ganapathi, A., et al.: Predicting multiple metrics for queries: better decisions enabled by machine learning. In: 2009 IEEE 25th International Conference on Data Engineering, pp. 592–603. IEEE (2009)
29.
32.
go back to reference Gupta, C., Mehta, A., Dayal, U.: PQR: predicting query execution times for autonomous workload management. In: 2008 International Conference on Autonomic Computing, pp. 13–22. IEEE (2008) Gupta, C., Mehta, A., Dayal, U.: PQR: predicting query execution times for autonomous workload management. In: 2008 International Conference on Autonomic Computing, pp. 13–22. IEEE (2008)
35.
go back to reference Hasan, R., Gandon, F.: A machine learning approach to SPARQL query performance prediction. In: 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 1, pp. 266–273. IEEE (2014) Hasan, R., Gandon, F.: A machine learning approach to SPARQL query performance prediction. In: 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 1, pp. 266–273. IEEE (2014)
37.
39.
go back to reference Huang, H.Y., et al.: Power of data in quantum machine learning. Nat. Commun. 12(1) (2021) Huang, H.Y., et al.: Power of data in quantum machine learning. Nat. Commun. 12(1) (2021)
42.
go back to reference Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355 (1998)CrossRef Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355 (1998)CrossRef
43.
go back to reference Kim, K., Jung, J., Seo, I., Han, W.S., Choi, K., Chong, J.: Learned cardinality estimation: an in-depth study. In: Proceedings of the 2022 International Conference on Management of Data, pp. 1214–1227 (2022) Kim, K., Jung, J., Seo, I., Han, W.S., Choi, K., Chong, J.: Learned cardinality estimation: an in-depth study. In: Proceedings of the 2022 International Conference on Management of Data, pp. 1214–1227 (2022)
45.
go back to reference Liu, M., Zhang, F., Ma, Y., Pota, H.R., Shen, W.: Evacuation path optimization based on quantum ant colony algorithm. Adv. Eng. Inform. 30(3), 259–267 (2016)CrossRef Liu, M., Zhang, F., Ma, Y., Pota, H.R., Shen, W.: Evacuation path optimization based on quantum ant colony algorithm. Adv. Eng. Inform. 30(3), 259–267 (2016)CrossRef
46.
go back to reference Luo, G., Naughton, J.F., Ellmann, C.J., Watzke, M.W.: Transaction reordering. Data Knowl. Eng. 69(1), 29–49 (2010)CrossRef Luo, G., Naughton, J.F., Ellmann, C.J., Watzke, M.W.: Transaction reordering. Data Knowl. Eng. 69(1), 29–49 (2010)CrossRef
47.
50.
go back to reference Moore, M., Narayanan, A.: Quantum-inspired computing. Department Computer Science, University Exeter, Exeter, UK (1995) Moore, M., Narayanan, A.: Quantum-inspired computing. Department Computer Science, University Exeter, Exeter, UK (1995)
56.
go back to reference Schönberger, M., Scherzinger, S., Mauerer, W.: Applicability of quantum computing on database query optimization. In: Frühjahrstreffen Fachgruppe Datenbanken in Potsdam (Poster Presentation), March 2022 Schönberger, M., Scherzinger, S., Mauerer, W.: Applicability of quantum computing on database query optimization. In: Frühjahrstreffen Fachgruppe Datenbanken in Potsdam (Poster Presentation), March 2022
57.
go back to reference Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path selection in a relational database management system. In: Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data - SIGMOD 1979. ACM Press (1979). https://doi.org/10.1145/582095.582099 Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path selection in a relational database management system. In: Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data - SIGMOD 1979. ACM Press (1979). https://​doi.​org/​10.​1145/​582095.​582099
61.
go back to reference Wang, H., et al.: April: An automatic graph data management system based on reinforcement learning. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, pp. 3465–3468 (2020) Wang, H., et al.: April: An automatic graph data management system based on reinforcement learning. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, pp. 3465–3468 (2020)
64.
go back to reference Woltmann, L., Hartmann, C., Thiele, M., Habich, D., Lehner, W.: Cardinality estimation with local deep learning models. In: Proceedings of the Second International Workshop on Exploiting Artificial Intelligence Techniques for Data Management - aiDM 2019. ACM Press (2019). https://doi.org/10.1145/3329859.3329875 Woltmann, L., Hartmann, C., Thiele, M., Habich, D., Lehner, W.: Cardinality estimation with local deep learning models. In: Proceedings of the Second International Workshop on Exploiting Artificial Intelligence Techniques for Data Management - aiDM 2019. ACM Press (2019). https://​doi.​org/​10.​1145/​3329859.​3329875
65.
go back to reference Woltmann, L., Olwig, D., Hartmann, C., Habich, D., Lehner, W.: PostCENN: PostgreSQL with machine learning models for cardinality estimation. Proc. VLDB Endowment 14(12), 2715–2718 (2021)CrossRef Woltmann, L., Olwig, D., Hartmann, C., Habich, D., Lehner, W.: PostCENN: PostgreSQL with machine learning models for cardinality estimation. Proc. VLDB Endowment 14(12), 2715–2718 (2021)CrossRef
67.
go back to reference Zhao, K., Yu, J.X., He, Z., Li, R., Zhang, H.: Lightweight and accurate cardinality estimation by neural network gaussian process. In: Proceedings of the 2022 International Conference on Management of Data, pp. 973–987 (2022) Zhao, K., Yu, J.X., He, Z., Li, R., Zhang, H.: Lightweight and accurate cardinality estimation by neural network gaussian process. In: Proceedings of the 2022 International Conference on Management of Data, pp. 973–987 (2022)
Metadata
Title
Quantum Data Management and Quantum Machine Learning for Data Management: State-of-the-Art and Open Challenges
Authors
Sven Groppe
Jinghua Groppe
Umut Çalıkyılmaz
Tobias Winker
Le Gruenwal
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-35081-8_20

Premium Partner