Skip to main content
Top

2021 | OriginalPaper | Chapter

Quantum Dots Synthesis and Application

Authors : Jaison Jeevanandam, Satheesh Kumar Balu, Swetha Andra, Michael K. Danquah, Manisha Vidyavathi, Murugesan Muthalagu

Published in: Contemporary Nanomaterials in Material Engineering Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Zero dimensional nanostructures that are electronically confined in all directions are called quantum dots. These nanosized dots are usually crystallized semiconductor with enhanced properties of fluorescence. Unlike the one- and two-dimensional nanoparticles such as thin films and rods, quantum dots can be fabricated from a widespread range of elements such as metals, metal complexes, carbon, and rare earth elements. Quantum dots can be used as molecular carriers without any loss of energy whilst enhancing the properties and functional characteristics of the foreign molecule. Thus, quantum dots are utilized in applications including electronics, delivery of drugs, solar panels, medical imaging and waste treatment. The present chapter discusses various approaches for synthesizing quantum dots and their associated physical and chemical properties. In addition, nanocomposites are discussed along with their recent applications in various fields as they are synthesized by blending different materials with quantum dots.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alvarez-Quintana, J., et al.: Cross-plane thermal conductivity reduction of vertically uncorrelated Ge∕Si quantum dot superlattices. Appl. Phys. Lett. 93, 013112 (2008)CrossRef Alvarez-Quintana, J., et al.: Cross-plane thermal conductivity reduction of vertically uncorrelated Ge∕Si quantum dot superlattices. Appl. Phys. Lett. 93, 013112 (2008)CrossRef
2.
go back to reference Ananthanarayanan, A., et al.: Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale 7, 8159–8165 (2015)CrossRef Ananthanarayanan, A., et al.: Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale 7, 8159–8165 (2015)CrossRef
3.
go back to reference Andra, S., Balu, S.K., Jeevanandham, J., Muthalagu, M., Vidyavathy, M., San Chan, Y., Danquah, M.K.: Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn-Schmiedeberg’s archives of pharmacology, pp. 1–17 (2019) Andra, S., Balu, S.K., Jeevanandham, J., Muthalagu, M., Vidyavathy, M., San Chan, Y., Danquah, M.K.: Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn-Schmiedeberg’s archives of pharmacology, pp. 1–17 (2019)
4.
go back to reference Anikin, K.V., Melnik, N.N., Simakin, A.V., Shafeev, G.A., Voronov, V.V., Vitukhnovsky, A.G.: Formation of ZnSe and CdS quantum dots via laser ablation in liquids. Chem. Phys. Lett. 366, 357–360 (2002)CrossRef Anikin, K.V., Melnik, N.N., Simakin, A.V., Shafeev, G.A., Voronov, V.V., Vitukhnovsky, A.G.: Formation of ZnSe and CdS quantum dots via laser ablation in liquids. Chem. Phys. Lett. 366, 357–360 (2002)CrossRef
5.
go back to reference Antolini, F., Orazi, L.: Quantum dots synthesis through direct laser patterning: a review. Front. Chem. 7, 252 (2019)CrossRef Antolini, F., Orazi, L.: Quantum dots synthesis through direct laser patterning: a review. Front. Chem. 7, 252 (2019)CrossRef
6.
go back to reference Arul, V., Sethuraman, M.G.: Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications. Opt. Mater. 78, 181–190 (2018)CrossRef Arul, V., Sethuraman, M.G.: Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications. Opt. Mater. 78, 181–190 (2018)CrossRef
7.
go back to reference Ayyub, P., Chandra, R., Taneja, P., Sharma, A., Pinto, R.: Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Appl. Phys. A 73, 67–73 (2001)CrossRef Ayyub, P., Chandra, R., Taneja, P., Sharma, A., Pinto, R.: Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Appl. Phys. A 73, 67–73 (2001)CrossRef
8.
go back to reference Babiński, A., Jasiński, J., Bożek, R., Szepielow, A., Baranowski, J.: Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap. Appl. Phys. Lett. 79, 2576–2578 (2001)CrossRef Babiński, A., Jasiński, J., Bożek, R., Szepielow, A., Baranowski, J.: Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap. Appl. Phys. Lett. 79, 2576–2578 (2001)CrossRef
9.
go back to reference Bae, W.K., Char, K., Hur, H., Lee, S.: Single-step synthesis of quantum dots with chemical composition gradients. Chem. Mater. 20, 531–539 (2008)CrossRef Bae, W.K., Char, K., Hur, H., Lee, S.: Single-step synthesis of quantum dots with chemical composition gradients. Chem. Mater. 20, 531–539 (2008)CrossRef
10.
go back to reference Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P.W., Langer, R., Farokhzad, O.C.: Quantum dot—aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 7, 3065–3070 (2007). https://doi.org/10.1021/nl071546nCrossRef Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P.W., Langer, R., Farokhzad, O.C.: Quantum dot—aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 7, 3065–3070 (2007). https://​doi.​org/​10.​1021/​nl071546nCrossRef
11.
go back to reference Banerjee, S., Pillai, S.C., Falaras, P., O’shea, K.E., Byrne, J.A., Dionysiou, D.D.: New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 5, 2543–2554 (2014) Banerjee, S., Pillai, S.C., Falaras, P., O’shea, K.E., Byrne, J.A., Dionysiou, D.D.: New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 5, 2543–2554 (2014)
12.
go back to reference Bao, H., Lu, Z., Cui, X., Qiao, Y., Guo, J., Anderson, J.M., Li, C.M.: Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater. 6, 3534–3541 (2010)CrossRef Bao, H., Lu, Z., Cui, X., Qiao, Y., Guo, J., Anderson, J.M., Li, C.M.: Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater. 6, 3534–3541 (2010)CrossRef
13.
go back to reference Bao, Y., Liu, W., Shamsa, M., Alim, K., Balandin, A., Liu, J.: Electrical and thermal conductivity of Ge∕ Si quantum dot superlattices. J. Electrochem. Soc. 152, G432–G435 (2005)CrossRef Bao, Y., Liu, W., Shamsa, M., Alim, K., Balandin, A., Liu, J.: Electrical and thermal conductivity of Ge∕ Si quantum dot superlattices. J. Electrochem. Soc. 152, G432–G435 (2005)CrossRef
14.
go back to reference Baptista, A., Silva, F., Porteiro, J., Míguez, J., Pinto, G.: Sputtering Physical Vapour Deposition (PVD) coatings: a critical review on process improvement and market trend demands. Coatings 8, 402 (2018)CrossRef Baptista, A., Silva, F., Porteiro, J., Míguez, J., Pinto, G.: Sputtering Physical Vapour Deposition (PVD) coatings: a critical review on process improvement and market trend demands. Coatings 8, 402 (2018)CrossRef
15.
go back to reference Bera, D., Kuiry, S.C., Seal, S.: Synthesis of nanostructured materials using template-assisted electrodeposition. JOM 56, 49–53 (2004)CrossRef Bera, D., Kuiry, S.C., Seal, S.: Synthesis of nanostructured materials using template-assisted electrodeposition. JOM 56, 49–53 (2004)CrossRef
16.
go back to reference Bera, D., Qian, L., Tseng, T.-K., Holloway, P.H.: Quantum dots and their multimodal applications: a review. Materials 3, 2260–2345 (2010)CrossRef Bera, D., Qian, L., Tseng, T.-K., Holloway, P.H.: Quantum dots and their multimodal applications: a review. Materials 3, 2260–2345 (2010)CrossRef
17.
go back to reference Bobrovsky, A., Shibaev, V., Abramchuk, S., Elyashevitch, G., Samokhvalov, P., Oleinikov, V., Mochalov, K.: Quantum dot–polymer composites based on nanoporous polypropylene films with different draw ratios. Eur. Polymer J. 82, 93–101 (2016)CrossRef Bobrovsky, A., Shibaev, V., Abramchuk, S., Elyashevitch, G., Samokhvalov, P., Oleinikov, V., Mochalov, K.: Quantum dot–polymer composites based on nanoporous polypropylene films with different draw ratios. Eur. Polymer J. 82, 93–101 (2016)CrossRef
18.
go back to reference Bonilla, C.A.M., Kouznetsov, V.V.: “Green” quantum dots: basics, green synthesis, and nanotechnological applications. In: Green Nanotechnology-Overview and Further Prospects. IntechOpen (2016) Bonilla, C.A.M., Kouznetsov, V.V.: “Green” quantum dots: basics, green synthesis, and nanotechnological applications. In: Green Nanotechnology-Overview and Further Prospects. IntechOpen (2016)
19.
go back to reference Borovaya, M., Burlaka, O., Yemets, A., Blume, Y.B.: Biosynthesis of quantum dots and their potential applications in biology and biomedicine. In: Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies, pp 339–362. Springer (2015a) Borovaya, M., Burlaka, O., Yemets, A., Blume, Y.B.: Biosynthesis of quantum dots and their potential applications in biology and biomedicine. In: Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies, pp 339–362. Springer (2015a)
20.
go back to reference Borovaya, M., Pirko, Y., Krupodorova, T., Naumenko, A., Blume, Y., Yemets, A.: Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm. Biotechnology & Biotechnological Equipment 29, 1156–1163 (2015)CrossRef Borovaya, M., Pirko, Y., Krupodorova, T., Naumenko, A., Blume, Y., Yemets, A.: Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm. Biotechnology & Biotechnological Equipment 29, 1156–1163 (2015)CrossRef
21.
go back to reference Borovaya, M.N., Naumenko, A.P., Matvieieva, N.A., Blume, Y.B., Yemets, A.I.: Biosynthesis of luminescent CdS quantum dots using plant hairy root culture. Nanoscale Res. Lett. 9, 686 (2014)CrossRef Borovaya, M.N., Naumenko, A.P., Matvieieva, N.A., Blume, Y.B., Yemets, A.I.: Biosynthesis of luminescent CdS quantum dots using plant hairy root culture. Nanoscale Res. Lett. 9, 686 (2014)CrossRef
22.
go back to reference Brichkin, S.B., Razumov, V.F.: Colloidal quantum dots: synthesis, properties and applications. Russ. Chem. Rev. 85, 1297 (2016)CrossRef Brichkin, S.B., Razumov, V.F.: Colloidal quantum dots: synthesis, properties and applications. Russ. Chem. Rev. 85, 1297 (2016)CrossRef
23.
go back to reference Briscoe, J., Marinovic, A., Sevilla, M., Dunn, S., Titirici, M.: Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angew. Chem. Int. Ed. 54, 4463–4468 (2015)CrossRef Briscoe, J., Marinovic, A., Sevilla, M., Dunn, S., Titirici, M.: Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angew. Chem. Int. Ed. 54, 4463–4468 (2015)CrossRef
24.
go back to reference Brooks, J., Lefebvre, D.D.: Optimization of conditions for cadmium selenide quantum dot biosynthesis in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 101, 2735–2745 (2017)CrossRef Brooks, J., Lefebvre, D.D.: Optimization of conditions for cadmium selenide quantum dot biosynthesis in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 101, 2735–2745 (2017)CrossRef
25.
go back to reference Bruna, N., et al.: Synthesis of salt-stable fluorescent nanoparticles (quantum dots) by polyextremophile halophilic bacteria. Scientific reports 9, 1953 (2019)CrossRef Bruna, N., et al.: Synthesis of salt-stable fluorescent nanoparticles (quantum dots) by polyextremophile halophilic bacteria. Scientific reports 9, 1953 (2019)CrossRef
28.
go back to reference Chen, M.-L., et al.: Synthesis of carbon nanomaterials-CdSe composites and their photocatalytic activity for degradation of methylene blue. J. Nanomater. 2012, 21 (2012) Chen, M.-L., et al.: Synthesis of carbon nanomaterials-CdSe composites and their photocatalytic activity for degradation of methylene blue. J. Nanomater. 2012, 21 (2012)
29.
go back to reference Chen, X., Peng, L., Huang, K., Shi, Z., Xie, R., Yang, W.: Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Res. 9, 1994–2006 (2016)CrossRef Chen, X., Peng, L., Huang, K., Shi, Z., Xie, R., Yang, W.: Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Res. 9, 1994–2006 (2016)CrossRef
31.
go back to reference Chinnathambi, S., Shirahata, N.: Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci. Technol. Adv. Mater. 20, 337–355 (2019)CrossRef Chinnathambi, S., Shirahata, N.: Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci. Technol. Adv. Mater. 20, 337–355 (2019)CrossRef
32.
go back to reference Choi, M.K., Yang, J., Hyeon, T., Kim, D.-H.: Flexible quantum dot light-emitting diodes for next-generation displays. NPJ Flex. Electron. 2, 10 (2018)CrossRef Choi, M.K., Yang, J., Hyeon, T., Kim, D.-H.: Flexible quantum dot light-emitting diodes for next-generation displays. NPJ Flex. Electron. 2, 10 (2018)CrossRef
33.
go back to reference Choi, M.K., et al.: Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015)CrossRef Choi, M.K., et al.: Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015)CrossRef
35.
go back to reference Crippa, A., et al.: Level spectrum and charge relaxation in a silicon double quantum dot probed by dual-gate reflectometry. Nano Lett. 17, 1001–1006 (2017)CrossRef Crippa, A., et al.: Level spectrum and charge relaxation in a silicon double quantum dot probed by dual-gate reflectometry. Nano Lett. 17, 1001–1006 (2017)CrossRef
36.
go back to reference Crone, B., et al.: Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521 (2000)CrossRef Crone, B., et al.: Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521 (2000)CrossRef
37.
go back to reference Dahi, A., Colson, P., Jamin, C., Cloots, R., Lismont, M., Dreesen, L.: Radio-frequency magnetron sputtering: a versatile tool for CdSe quantum dots depositions with controlled properties. J. Mater. Environ. Sci. 7, 2277–2287 (2016) Dahi, A., Colson, P., Jamin, C., Cloots, R., Lismont, M., Dreesen, L.: Radio-frequency magnetron sputtering: a versatile tool for CdSe quantum dots depositions with controlled properties. J. Mater. Environ. Sci. 7, 2277–2287 (2016)
38.
go back to reference Dai, W.-X., Zhang, L., Zhao, W.-W., Yu, X.-D., Xu, J.-J., Chen, H.-Y.: Hybrid PbS quantum dot/nanoporous NiO film nanostructure: preparation, characterization, and application for a self-powered cathodic photoelectrochemical biosensor. Anal. Chem. 89, 8070–8078 (2017)CrossRef Dai, W.-X., Zhang, L., Zhao, W.-W., Yu, X.-D., Xu, J.-J., Chen, H.-Y.: Hybrid PbS quantum dot/nanoporous NiO film nanostructure: preparation, characterization, and application for a self-powered cathodic photoelectrochemical biosensor. Anal. Chem. 89, 8070–8078 (2017)CrossRef
39.
go back to reference Darma, Y., Rusydi, A.: Quantum dot based memory devices: Current status and future prospect by simulation perspective. In: AIP Conference Proceedings, vol 1, pp. 20–23. AIP (2014) Darma, Y., Rusydi, A.: Quantum dot based memory devices: Current status and future prospect by simulation perspective. In: AIP Conference Proceedings, vol 1, pp. 20–23. AIP (2014)
40.
go back to reference de Mello, Donegá C., Liljeroth, P., Vanmaekelbergh, D.: Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 1, 1152–1162 (2005)CrossRef de Mello, Donegá C., Liljeroth, P., Vanmaekelbergh, D.: Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 1, 1152–1162 (2005)CrossRef
41.
go back to reference Derfus, A.M., Chan, W.C., Bhatia, S.N.: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004)CrossRef Derfus, A.M., Chan, W.C., Bhatia, S.N.: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004)CrossRef
43.
go back to reference Dhawan, S., Dhawan, T., Vedeshwar, A.G.: Growth of Nb2O5 quantum dots by physical vapor deposition. Mater. Lett. 126, 32–35 (2014)CrossRef Dhawan, S., Dhawan, T., Vedeshwar, A.G.: Growth of Nb2O5 quantum dots by physical vapor deposition. Mater. Lett. 126, 32–35 (2014)CrossRef
44.
go back to reference Di, J., et al.: New insight of Ag quantum dots with the improved molecular oxygen activation ability for photocatalytic applications. Appl. Catal. B 188, 376–387 (2016)CrossRef Di, J., et al.: New insight of Ag quantum dots with the improved molecular oxygen activation ability for photocatalytic applications. Appl. Catal. B 188, 376–387 (2016)CrossRef
47.
go back to reference Du, J., et al.: Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J. Am. Chem. Soc. 138, 4201–4209 (2016)CrossRef Du, J., et al.: Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J. Am. Chem. Soc. 138, 4201–4209 (2016)CrossRef
49.
go back to reference Fan, L., et al.: Direct synthesis of graphene quantum dots by chemical vapor deposition. Part. Part. Syst. Charact. 30, 764–769 (2013)CrossRef Fan, L., et al.: Direct synthesis of graphene quantum dots by chemical vapor deposition. Part. Part. Syst. Charact. 30, 764–769 (2013)CrossRef
50.
go back to reference Ferry D (2016) Semiconductor Transport. CRC Press Ferry D (2016) Semiconductor Transport. CRC Press
51.
go back to reference Galyametdinov, Y.G., Shamilov, R., Nuzhdin, V., Valeev, V., Stepanov, A.: Luminescence of CdSe quantum dots near a layer of silver nanoparticles ion-synthesized in sapphire. Tech. Phys. Lett. 42, 1067–1070 (2016)CrossRef Galyametdinov, Y.G., Shamilov, R., Nuzhdin, V., Valeev, V., Stepanov, A.: Luminescence of CdSe quantum dots near a layer of silver nanoparticles ion-synthesized in sapphire. Tech. Phys. Lett. 42, 1067–1070 (2016)CrossRef
52.
go back to reference Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969 (2004)CrossRef Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969 (2004)CrossRef
53.
go back to reference Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S.: In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 63–72 (2005)CrossRef Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S.: In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 63–72 (2005)CrossRef
55.
go back to reference Groiss, H., et al.: Size control and midinfrared emission of epitaxial Pb Te∕ Cd Te quantum dot precipitates grown by molecular beam epitaxy. Appl. Phys. Lett. 91, 222106 (2007)CrossRef Groiss, H., et al.: Size control and midinfrared emission of epitaxial Pb Te∕ Cd Te quantum dot precipitates grown by molecular beam epitaxy. Appl. Phys. Lett. 91, 222106 (2007)CrossRef
56.
go back to reference Guo, J., et al.: Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science 352, 321–325 (2016)CrossRef Guo, J., et al.: Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science 352, 321–325 (2016)CrossRef
57.
go back to reference Guo, L.-P., Zhang, Y., Li, W.-C.: Sustainable microalgae for the simultaneous synthesis of carbon quantum dots for cellular imaging and porous carbon for CO2 capture. J. Colloid Interface Sci. 493, 257–264 (2017)CrossRef Guo, L.-P., Zhang, Y., Li, W.-C.: Sustainable microalgae for the simultaneous synthesis of carbon quantum dots for cellular imaging and porous carbon for CO2 capture. J. Colloid Interface Sci. 493, 257–264 (2017)CrossRef
58.
go back to reference Hardman, R.: A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172 (2005)CrossRef Hardman, R.: A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172 (2005)CrossRef
59.
go back to reference Haro‐González, P., Martínez‐Maestro, L., Martín, I., García‐Solé, J., Jaque, D.: High‐sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots. Small 8, 2652–2658 (2012) Haro‐González, P., Martínez‐Maestro, L., Martín, I., García‐Solé, J., Jaque, D.: High‐sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots. Small 8, 2652–2658 (2012)
60.
go back to reference Harris, R.D., et al.: Electronic processes within quantum dot-molecule complexes. Chem. Rev. 116, 12865–12919 (2016)CrossRef Harris, R.D., et al.: Electronic processes within quantum dot-molecule complexes. Chem. Rev. 116, 12865–12919 (2016)CrossRef
61.
go back to reference Havrdova, M., et al.: Toxicity of carbon dots–effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon 99, 238–248 (2016)CrossRef Havrdova, M., et al.: Toxicity of carbon dots–effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon 99, 238–248 (2016)CrossRef
63.
go back to reference Hayashi, T., Fujisawa, T., Cheong, H.-D., Jeong, Y.H., Hirayama, Y.: Coherent manipulation of electronic states in a double quantum dot. Phys. Rev. Lett. 91, 226804 (2003)CrossRef Hayashi, T., Fujisawa, T., Cheong, H.-D., Jeong, Y.H., Hirayama, Y.: Coherent manipulation of electronic states in a double quantum dot. Phys. Rev. Lett. 91, 226804 (2003)CrossRef
64.
go back to reference He, X., Gao, L., Ma, N.: One-step instant synthesis of protein-conjugated quantum dots at room temperature. Sci. Rep. 3, 2825 (2013)CrossRef He, X., Gao, L., Ma, N.: One-step instant synthesis of protein-conjugated quantum dots at room temperature. Sci. Rep. 3, 2825 (2013)CrossRef
65.
go back to reference Horoz, S., et al.: CdSe quantum dots synthesized by laser ablation in water and their photovoltaic applications. Appl. Phys. Lett. 101, 223902 (2012)CrossRef Horoz, S., et al.: CdSe quantum dots synthesized by laser ablation in water and their photovoltaic applications. Appl. Phys. Lett. 101, 223902 (2012)CrossRef
66.
go back to reference Hu, M.Z., Zhu, T.: Semiconductor nanocrystal quantum dot synthesis approaches towards large-scale industrial production for energy applications. Nanoscale Res. Lett. 10, 469 (2015)CrossRef Hu, M.Z., Zhu, T.: Semiconductor nanocrystal quantum dot synthesis approaches towards large-scale industrial production for energy applications. Nanoscale Res. Lett. 10, 469 (2015)CrossRef
68.
go back to reference Huang, C., Dong, H., Su, Y., Wu, Y., Narron, R., Yong, Q.: Synthesis of carbon quantum dot nanoparticles derived from byproducts in bio-refinery process for cell imaging and in vivo bioimaging. Nanomaterials 9, 387 (2019)CrossRef Huang, C., Dong, H., Su, Y., Wu, Y., Narron, R., Yong, Q.: Synthesis of carbon quantum dot nanoparticles derived from byproducts in bio-refinery process for cell imaging and in vivo bioimaging. Nanomaterials 9, 387 (2019)CrossRef
70.
go back to reference Iftikhar, Z., et al.: Tunable quantum criticality and super-ballistic transport in a “charge” Kondo circuit. Science 360, 1315–1320 (2018)MathSciNetMATHCrossRef Iftikhar, Z., et al.: Tunable quantum criticality and super-ballistic transport in a “charge” Kondo circuit. Science 360, 1315–1320 (2018)MathSciNetMATHCrossRef
71.
go back to reference Imran, M., Saif, M.J., Kuznetsov, A.E., Idrees, N., Iqbal, J., Tahir, A.A.: Computational investigations into the structural and electronic properties of Cd n Te n (n = 1–17) quantum dots. RSC Advances 9, 5091–5099 (2019)CrossRef Imran, M., Saif, M.J., Kuznetsov, A.E., Idrees, N., Iqbal, J., Tahir, A.A.: Computational investigations into the structural and electronic properties of Cd n Te n (n = 1–17) quantum dots. RSC Advances 9, 5091–5099 (2019)CrossRef
72.
go back to reference Irshad, M., Ahmad, F., Mohamed, N., Abdullah, M.: Preparation and structural characterization of template assisted electrodeposited copper nanowires. Int. J. Electrochem. Sci. 9, 2548–2555 (2014) Irshad, M., Ahmad, F., Mohamed, N., Abdullah, M.: Preparation and structural characterization of template assisted electrodeposited copper nanowires. Int. J. Electrochem. Sci. 9, 2548–2555 (2014)
73.
go back to reference Jasieniak, J., Califano, M., Watkins, S.E.: Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 5, 5888–5902 (2011)CrossRef Jasieniak, J., Califano, M., Watkins, S.E.: Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 5, 5888–5902 (2011)CrossRef
74.
go back to reference Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K.: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018)CrossRef Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K.: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018)CrossRef
75.
go back to reference Jeevanandam, J., Chan, Y.S., Pan, S., Danquah, M.K.: Metal oxide nanocomposites: Cytotoxicity and targeted drug delivery applications. In: Hybrid Nanocomposites: Fundamentals, Synthesis and Applications, pp 111–147. Pan Stanford Publishing (2019) Jeevanandam, J., Chan, Y.S., Pan, S., Danquah, M.K.: Metal oxide nanocomposites: Cytotoxicity and targeted drug delivery applications. In: Hybrid Nanocomposites: Fundamentals, Synthesis and Applications, pp 111–147. Pan Stanford Publishing (2019)
76.
go back to reference Jeevanandam, J., San Chan, Y., Danquah, M.K.: Nano-formulations of drugs: recent developments, impact and challenges. Biochimie 128, 99–112 (2016)CrossRef Jeevanandam, J., San Chan, Y., Danquah, M.K.: Nano-formulations of drugs: recent developments, impact and challenges. Biochimie 128, 99–112 (2016)CrossRef
77.
go back to reference Jeevanandam, J., Sundaramurthy, A., Sharma, V., Murugan, C., Pal, K., Kodous, M.H.A., Danquah, M.K.: Sustainability of one-dimensional nanostructures: fabrication and industrial applications. In: Sustainable Nanoscale Engineering, pp 83–113. Elsevier (2020) Jeevanandam, J., Sundaramurthy, A., Sharma, V., Murugan, C., Pal, K., Kodous, M.H.A., Danquah, M.K.: Sustainability of one-dimensional nanostructures: fabrication and industrial applications. In: Sustainable Nanoscale Engineering, pp 83–113. Elsevier (2020)
79.
go back to reference Jha, S., Mathur, P., Ramteke, S., Jain, N.K.: Pharmaceutical potential of quantum dots. Artif. Cells Nanomed. Biotechnol. 46, 57–65 (2018)CrossRef Jha, S., Mathur, P., Ramteke, S., Jain, N.K.: Pharmaceutical potential of quantum dots. Artif. Cells Nanomed. Biotechnol. 46, 57–65 (2018)CrossRef
82.
go back to reference Jin, S., Hu, Y., Gu, Z., Liu, L., Wu, H.-C.: Application of quantum dots in biological imaging. J. Nanomater. 2011, 13 (2011)CrossRef Jin, S., Hu, Y., Gu, Z., Liu, L., Wu, H.-C.: Application of quantum dots in biological imaging. J. Nanomater. 2011, 13 (2011)CrossRef
85.
go back to reference Kagan, C.R., Lifshitz, E., Sargent, E.H., Talapin, D.V.: Building devices from colloidal quantum dots. Science 353, aac5523 (2016) Kagan, C.R., Lifshitz, E., Sargent, E.H., Talapin, D.V.: Building devices from colloidal quantum dots. Science 353, aac5523 (2016)
86.
go back to reference Kairdolf, B.A., Smith, A.M., Stokes, T.H., Wang, M.D., Young, A.N., Nie, S.: Semiconductor quantum dots for bioimaging and biodiagnostic applications. Ann. Rev. Anal. Chem. 6, 143–162 (2013)CrossRef Kairdolf, B.A., Smith, A.M., Stokes, T.H., Wang, M.D., Young, A.N., Nie, S.: Semiconductor quantum dots for bioimaging and biodiagnostic applications. Ann. Rev. Anal. Chem. 6, 143–162 (2013)CrossRef
87.
go back to reference Kang, T., Um, K., Park, J., Chang, H., Lee, D.C., Kim, C.-K., Lee, K.: Minimizing the fluorescence quenching caused by uncontrolled aggregation of CdSe/CdS core/shell quantum dots for biosensor applications. Sens. Actuators B Chem. 222, 871–878 (2016)CrossRef Kang, T., Um, K., Park, J., Chang, H., Lee, D.C., Kim, C.-K., Lee, K.: Minimizing the fluorescence quenching caused by uncontrolled aggregation of CdSe/CdS core/shell quantum dots for biosensor applications. Sens. Actuators B Chem. 222, 871–878 (2016)CrossRef
88.
go back to reference Karmakar, R.: Quantum dots and it method of preparations-revisited. Prajnan O Sadhona A Sci. Ann. 116 (2015) Karmakar, R.: Quantum dots and it method of preparations-revisited. Prajnan O Sadhona A Sci. Ann. 116 (2015)
90.
go back to reference Kim, M., Osone, S., Kim, T., Higashi, H., Seto, T.: Synthesis of nanoparticles by laser ablation: a review. KONA Powder Part. J. 2017009 (2017) Kim, M., Osone, S., Kim, T., Higashi, H., Seto, T.: Synthesis of nanoparticles by laser ablation: a review. KONA Powder Part. J. 2017009 (2017)
91.
go back to reference Kim, Y.T., Han, J.H., Hong, B.H., Kwon, Y.U.: Electrochemical synthesis of CdSe quantum-dot arrays on a graphene basal plane using mesoporous silica thin-film templates. Adv. Mater. 22, 515–518 (2010)CrossRef Kim, Y.T., Han, J.H., Hong, B.H., Kwon, Y.U.: Electrochemical synthesis of CdSe quantum-dot arrays on a graphene basal plane using mesoporous silica thin-film templates. Adv. Mater. 22, 515–518 (2010)CrossRef
94.
go back to reference Kojima, T., Sugimoto, H., Fujii, M.: Size-dependent photocatalytic activity of colloidal silicon quantum dot. J. Phys. Chem. C 122, 1874–1880 (2018)CrossRef Kojima, T., Sugimoto, H., Fujii, M.: Size-dependent photocatalytic activity of colloidal silicon quantum dot. J. Phys. Chem. C 122, 1874–1880 (2018)CrossRef
95.
go back to reference Kong, L., Zhang, L., Meng, Z., Xu, C., Lin, N., Liu, X.-Y.: Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting. Nanotechnology 29, 315203 (2018)CrossRef Kong, L., Zhang, L., Meng, Z., Xu, C., Lin, N., Liu, X.-Y.: Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting. Nanotechnology 29, 315203 (2018)CrossRef
96.
go back to reference Konwar, A., Gogoi, N., Majumdar, G., Chowdhury, D.: Green chitosan–carbon dots nanocomposite hydrogel film with superior properties. Carbohyd. Polym. 115, 238–245 (2015)CrossRef Konwar, A., Gogoi, N., Majumdar, G., Chowdhury, D.: Green chitosan–carbon dots nanocomposite hydrogel film with superior properties. Carbohyd. Polym. 115, 238–245 (2015)CrossRef
97.
go back to reference Korala, L., Wang, Z., Liu, Y., Maldonado, S., Brock, S.L.: Uniform thin films of CdSe and CdSe(ZnS) Core(Shell) quantum dots by sol-gel assembly: enabling photoelectrochemical characterization and electronic applications. ACS Nano 7, 1215–1223 (2013). https://doi.org/10.1021/nn304563jCrossRef Korala, L., Wang, Z., Liu, Y., Maldonado, S., Brock, S.L.: Uniform thin films of CdSe and CdSe(ZnS) Core(Shell) quantum dots by sol-gel assembly: enabling photoelectrochemical characterization and electronic applications. ACS Nano 7, 1215–1223 (2013). https://​doi.​org/​10.​1021/​nn304563jCrossRef
98.
go back to reference Kramer, I.J., et al.: Efficient spray-coated colloidal quantum dot solar cells. Adv. Mater. 27, 116–121 (2015)CrossRef Kramer, I.J., et al.: Efficient spray-coated colloidal quantum dot solar cells. Adv. Mater. 27, 116–121 (2015)CrossRef
99.
go back to reference Kulakovich, O., et al.: Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2, 1449–1452 (2002)CrossRef Kulakovich, O., et al.: Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2, 1449–1452 (2002)CrossRef
100.
go back to reference Kumar, M.S., Yasoda, K.Y., Kumaresan, D., Kothurkar, N.K., Batabyal, S.K.: TiO2-carbon quantum dots (CQD) nanohybrid: enhanced photocatalytic activity. Mater. Res. Express 5, 075502 (2018)CrossRef Kumar, M.S., Yasoda, K.Y., Kumaresan, D., Kothurkar, N.K., Batabyal, S.K.: TiO2-carbon quantum dots (CQD) nanohybrid: enhanced photocatalytic activity. Mater. Res. Express 5, 075502 (2018)CrossRef
101.
go back to reference Kumar, S., Aziz, S.T., Girshevitz, O., Nessim, G.D.: One-step synthesis of N-doped graphene quantum dots from chitosan as a sole precursor using chemical vapor deposition. J. Phys. Chem. C 122, 2343–2349 (2018)CrossRef Kumar, S., Aziz, S.T., Girshevitz, O., Nessim, G.D.: One-step synthesis of N-doped graphene quantum dots from chitosan as a sole precursor using chemical vapor deposition. J. Phys. Chem. C 122, 2343–2349 (2018)CrossRef
103.
go back to reference Kurtin, J.: Quantum dot LED phosphors: performance and reliability improvements. In: Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVII, p. 86411D. International Society for Optics and Photonics (2013) Kurtin, J.: Quantum dot LED phosphors: performance and reliability improvements. In: Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVII, p. 86411D. International Society for Optics and Photonics (2013)
105.
go back to reference Lee, J., et al.: Imaging electrostatically confined Dirac fermions in graphene quantum dots. Nat. Phys. 12, 1032 (2016)CrossRef Lee, J., et al.: Imaging electrostatically confined Dirac fermions in graphene quantum dots. Nat. Phys. 12, 1032 (2016)CrossRef
106.
go back to reference Lee, Y.-L., Huang, B.-M., Chien, H.-T.: Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem. Mater. 20, 6903–6905 (2008)CrossRef Lee, Y.-L., Huang, B.-M., Chien, H.-T.: Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem. Mater. 20, 6903–6905 (2008)CrossRef
107.
go back to reference Lee, Y.K., Lee, H., Lee, C., Hwang, E., Park, J.Y.: Hot-electron-based solar energy conversion with metal–semiconductor nanodiodes. J. Phys. Condens. Matter 28, 254006 (2016)CrossRef Lee, Y.K., Lee, H., Lee, C., Hwang, E., Park, J.Y.: Hot-electron-based solar energy conversion with metal–semiconductor nanodiodes. J. Phys. Condens. Matter 28, 254006 (2016)CrossRef
108.
go back to reference Leng, M., et al.: Lead-free, blue emitting bismuth halide perovskite quantum dots. Angew. Chem. Int. Ed. 55, 15012–15016 (2016)CrossRef Leng, M., et al.: Lead-free, blue emitting bismuth halide perovskite quantum dots. Angew. Chem. Int. Ed. 55, 15012–15016 (2016)CrossRef
109.
go back to reference Leschkies, K.S., et al.: Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793–1798 (2007)CrossRef Leschkies, K.S., et al.: Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793–1798 (2007)CrossRef
110.
go back to reference Li, G., et al.: Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light-emitting diodes. Adv. Func. Mater. 26, 8478–8486 (2016)CrossRef Li, G., et al.: Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light-emitting diodes. Adv. Func. Mater. 26, 8478–8486 (2016)CrossRef
112.
go back to reference Li, H., He, X., Liu, Y., Huang, H., Lian, S., Lee, S.-T., Kang, Z.: One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49, 605–609 (2011)CrossRef Li, H., He, X., Liu, Y., Huang, H., Lian, S., Lee, S.-T., Kang, Z.: One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49, 605–609 (2011)CrossRef
114.
go back to reference Li, L., Daou, T.J., Texier, I., Kim Chi, T.T., Liem, N.Q., Reiss, P.: Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem. Mater. 21, 2422–2429 (2009)CrossRef Li, L., Daou, T.J., Texier, I., Kim Chi, T.T., Liem, N.Q., Reiss, P.: Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem. Mater. 21, 2422–2429 (2009)CrossRef
115.
go back to reference Li, Q., et al.: Nd2 (S, Se, Te) 3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells. Adv. Func. Mater. 26, 254–266 (2016)CrossRef Li, Q., et al.: Nd2 (S, Se, Te) 3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells. Adv. Func. Mater. 26, 254–266 (2016)CrossRef
116.
go back to reference Li, Y., et al.: A template/electrochemical deposition method for fabricating silver nanorod arrays based on porous anodic alumina. Nanomater. Nanotechnol. 7, 1847980417717543 (2017)CrossRef Li, Y., et al.: A template/electrochemical deposition method for fabricating silver nanorod arrays based on porous anodic alumina. Nanomater. Nanotechnol. 7, 1847980417717543 (2017)CrossRef
117.
go back to reference Liang, Q., Ma, W., Shi, Y., Li, Z., Yang, X.: Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60, 421–428 (2013)CrossRef Liang, Q., Ma, W., Shi, Y., Li, Z., Yang, X.: Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60, 421–428 (2013)CrossRef
118.
go back to reference Lim, H., Liu, Y., Kim, H.Y., Son, D.I.: Facile synthesis and characterization of carbon quantum dots and photovoltaic applications. Thin Solid Films 660, 672–677 (2018)CrossRef Lim, H., Liu, Y., Kim, H.Y., Son, D.I.: Facile synthesis and characterization of carbon quantum dots and photovoltaic applications. Thin Solid Films 660, 672–677 (2018)CrossRef
121.
go back to reference Maestro, L.M., Jacinto, C., Silva, U.R., Vetrone, F., Capobianco, J.A., Jaque, D., Solé, J.G.: CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging. Small 7, 1774–1778 (2011)CrossRef Maestro, L.M., Jacinto, C., Silva, U.R., Vetrone, F., Capobianco, J.A., Jaque, D., Solé, J.G.: CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging. Small 7, 1774–1778 (2011)CrossRef
122.
go back to reference Mahajan, S., Rani, M., Dubey, R., Mahajan, J.: Synthesis of CdSe crystal using hot injection method. Int. J. Latest Res. Sci. Technol. 2, 518–521 (2013) Mahajan, S., Rani, M., Dubey, R., Mahajan, J.: Synthesis of CdSe crystal using hot injection method. Int. J. Latest Res. Sci. Technol. 2, 518–521 (2013)
123.
go back to reference Mala, J.G.S., Rose, C.: Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918. J. Biotechnol. 170, 73–78 (2014)CrossRef Mala, J.G.S., Rose, C.: Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918. J. Biotechnol. 170, 73–78 (2014)CrossRef
124.
go back to reference Malgras, V., Tominaka, S., Ryan, J.W., Henzie, J., Takei, T., Ohara, K., Yamauchi, Y.: Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. J. Am. Chem. Soc. 138, 13874–13881 (2016)CrossRef Malgras, V., Tominaka, S., Ryan, J.W., Henzie, J., Takei, T., Ohara, K., Yamauchi, Y.: Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. J. Am. Chem. Soc. 138, 13874–13881 (2016)CrossRef
125.
go back to reference Mansur, H.S.: Quantum dots and nanocomposites. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 113–129 (2010)CrossRef Mansur, H.S.: Quantum dots and nanocomposites. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 113–129 (2010)CrossRef
126.
go back to reference Martynenko, I., Litvin, A., Purcell-Milton, F., Baranov, A., Fedorov, A., Gun’ko, Y.: Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B 5, 6701–6727 (2017)CrossRef Martynenko, I., Litvin, A., Purcell-Milton, F., Baranov, A., Fedorov, A., Gun’ko, Y.: Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B 5, 6701–6727 (2017)CrossRef
127.
go back to reference McCumiskey, E.J., Chandrasekhar, N., Taylor, C.R.: Nanomechanics of CdSe quantum dot–polymer nanocomposite films. Nanotechnology 21, 225703 (2010)CrossRef McCumiskey, E.J., Chandrasekhar, N., Taylor, C.R.: Nanomechanics of CdSe quantum dot–polymer nanocomposite films. Nanotechnology 21, 225703 (2010)CrossRef
128.
go back to reference Michalet, X., et al.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005) Michalet, X., et al.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)
129.
go back to reference Midolo, L., et al.: Electro-optic routing of photons from single quantum dots in photonic integrated circuits (2017). arXiv preprint arXiv:170706522 Midolo, L., et al.: Electro-optic routing of photons from single quantum dots in photonic integrated circuits (2017). arXiv preprint arXiv:​170706522
130.
go back to reference Nozik, A.J.: Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Inorg. Chem. 44, 6893–6899 (2005)CrossRef Nozik, A.J.: Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Inorg. Chem. 44, 6893–6899 (2005)CrossRef
131.
go back to reference Nozik, A.J., Beard, M.C., Luther, J.M., Law, M., Ellingson, R.J., Johnson, J.C.: Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010)CrossRef Nozik, A.J., Beard, M.C., Luther, J.M., Law, M., Ellingson, R.J., Johnson, J.C.: Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010)CrossRef
132.
go back to reference Oh, E., Liu, R., Nel, A., Gemill, K.B., Bilal, M., Cohen, Y., Medintz, I.L.: Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechnol. 11, 479 (2016)CrossRef Oh, E., Liu, R., Nel, A., Gemill, K.B., Bilal, M., Cohen, Y., Medintz, I.L.: Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechnol. 11, 479 (2016)CrossRef
133.
go back to reference Osman, H., et al.: One-step hot injection synthesis of gradient alloy CdxZn1-xSySe1-y quantum dots with large-span self-regulating ability. J. Lumin. 206, 565–570 (2019)CrossRef Osman, H., et al.: One-step hot injection synthesis of gradient alloy CdxZn1-xSySe1-y quantum dots with large-span self-regulating ability. J. Lumin. 206, 565–570 (2019)CrossRef
134.
go back to reference Owen, J., Brus, L.: Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots. J. Am. Chem. Soc. 139, 10939–10943 (2017)CrossRef Owen, J., Brus, L.: Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots. J. Am. Chem. Soc. 139, 10939–10943 (2017)CrossRef
135.
go back to reference Panagiotopoulou, M., et al.: Molecularly imprinted polymer coated quantum dots for multiplexed cell targeting and imaging. Angew. Chem. Int. Ed. 55, 8244–8248 (2016)CrossRef Panagiotopoulou, M., et al.: Molecularly imprinted polymer coated quantum dots for multiplexed cell targeting and imaging. Angew. Chem. Int. Ed. 55, 8244–8248 (2016)CrossRef
136.
go back to reference Peyvast, N., Zhou, K., Hogg, R.A., Childs, D.T.D.: Dominant role of many-body effects on the carrier distribution function of quantum dot lasers. Appl. Phys. Express 9, 032705 (2016)CrossRef Peyvast, N., Zhou, K., Hogg, R.A., Childs, D.T.D.: Dominant role of many-body effects on the carrier distribution function of quantum dot lasers. Appl. Phys. Express 9, 032705 (2016)CrossRef
138.
go back to reference Pu, Y., Cai, F., Wang, D., Wang, J.-X., Chen, J.-F.: Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind. Eng. Chem. Res. 57, 1790–1802 (2018)CrossRef Pu, Y., Cai, F., Wang, D., Wang, J.-X., Chen, J.-F.: Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind. Eng. Chem. Res. 57, 1790–1802 (2018)CrossRef
139.
go back to reference Qi, B.-P., Zhang, X., Shang, B.-B., Xiang, D., Zhang, S.: Solvothermal tuning of photoluminescent graphene quantum dots: from preparation to photoluminescence mechanism. J. Nanopart. Res. 20, 20 (2018)CrossRef Qi, B.-P., Zhang, X., Shang, B.-B., Xiang, D., Zhang, S.: Solvothermal tuning of photoluminescent graphene quantum dots: from preparation to photoluminescence mechanism. J. Nanopart. Res. 20, 20 (2018)CrossRef
141.
143.
go back to reference Qu, D., Zheng, M., Li, J., Xie, Z., Sun, Z.: Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light Sci. Appl. 4, e364 (2015b) Qu, D., Zheng, M., Li, J., Xie, Z., Sun, Z.: Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light Sci. Appl. 4, e364 (2015b)
145.
go back to reference Ramanan, V., Thiyagarajan, S.K., Raji, K., Suresh, R., Sekar, R., Ramamurthy, P.: Outright green synthesis of fluorescent carbon dots from eutrophic algal blooms for in vitro imaging. ACS Sustain. Chem. Eng. 4, 4724–4731 (2016)CrossRef Ramanan, V., Thiyagarajan, S.K., Raji, K., Suresh, R., Sekar, R., Ramamurthy, P.: Outright green synthesis of fluorescent carbon dots from eutrophic algal blooms for in vitro imaging. ACS Sustain. Chem. Eng. 4, 4724–4731 (2016)CrossRef
146.
go back to reference Ramkumar, V., Ju, S.: Quantum-dot and polychalcone mixed nanocomposites for polymer light-emitting diodes. J. Nanomater. 2017 (2017) Ramkumar, V., Ju, S.: Quantum-dot and polychalcone mixed nanocomposites for polymer light-emitting diodes. J. Nanomater. 2017 (2017)
148.
go back to reference Ren, Z., et al.: Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%. Chem. Mater. 27, 8398–8405 (2015)CrossRef Ren, Z., et al.: Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%. Chem. Mater. 27, 8398–8405 (2015)CrossRef
149.
go back to reference Reshak, A.H.: Quantum dots in photocatalytic applications: efficiently enhancing visible light photocatalytic activity by integrating CdO quantum dots as sensitizers. Phys. Chem. Chem. Phys. 19, 24915–24927 (2017)CrossRef Reshak, A.H.: Quantum dots in photocatalytic applications: efficiently enhancing visible light photocatalytic activity by integrating CdO quantum dots as sensitizers. Phys. Chem. Chem. Phys. 19, 24915–24927 (2017)CrossRef
150.
go back to reference Rossi, D., Wang, H., Dong, Y., Qiao, T., Qian, X., Son, D.H.: Light-induced activation of forbidden exciton transition in strongly confined perovskite quantum dots. ACS Nano 12, 12436–12443 (2018)CrossRef Rossi, D., Wang, H., Dong, Y., Qiao, T., Qian, X., Son, D.H.: Light-induced activation of forbidden exciton transition in strongly confined perovskite quantum dots. ACS Nano 12, 12436–12443 (2018)CrossRef
152.
go back to reference Santra, S., Yang, H., Holloway, P.H., Stanley, J.T., Mericle, R.A.: Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS: Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J. Am. Chem. Soc. 127, 1656–1657 (2005)CrossRef Santra, S., Yang, H., Holloway, P.H., Stanley, J.T., Mericle, R.A.: Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS: Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J. Am. Chem. Soc. 127, 1656–1657 (2005)CrossRef
153.
go back to reference Schiffman, J.D., Balakrishna, R.G.: Quantum dots as fluorescent probes: synthesis, surface chemistry, energy transfer mechanisms, and applications. Sens. Actuators B Chem. 258, 1191–1214 (2018)CrossRef Schiffman, J.D., Balakrishna, R.G.: Quantum dots as fluorescent probes: synthesis, surface chemistry, energy transfer mechanisms, and applications. Sens. Actuators B Chem. 258, 1191–1214 (2018)CrossRef
154.
go back to reference Schneider, R., Balan, L., Aldeek, F.: Synthesis, characterization and biological applications of water-soluble ZnO quantum dots. In: Nanomaterials. IntechOpen (2011) Schneider, R., Balan, L., Aldeek, F.: Synthesis, characterization and biological applications of water-soluble ZnO quantum dots. In: Nanomaterials. IntechOpen (2011)
155.
go back to reference Sekhar, M.C., Reddy, B.P., Mallikarjuna, K., Krishna, G.G., Park, S.-H.: Biogenic Fabrication of Au/Pd bimetallic quantum dots from mushroom extract and their application to organic dye pollutant reduction. Curr. Nanosci. 14, 313–318 (2018)CrossRef Sekhar, M.C., Reddy, B.P., Mallikarjuna, K., Krishna, G.G., Park, S.-H.: Biogenic Fabrication of Au/Pd bimetallic quantum dots from mushroom extract and their application to organic dye pollutant reduction. Curr. Nanosci. 14, 313–318 (2018)CrossRef
156.
go back to reference Şenel, B., Demir, N., Büyükköroğlu, G., Yıldız, M.: Graphene quantum dots: synthesis, characterization, cell viability, genotoxicity for biomedical applications. Saudi Pharm. J. (2019) Şenel, B., Demir, N., Büyükköroğlu, G., Yıldız, M.: Graphene quantum dots: synthesis, characterization, cell viability, genotoxicity for biomedical applications. Saudi Pharm. J. (2019)
157.
go back to reference Shah, K.A., Bhat, B.M.U.D.: Effect of magnetic field on quantum state energies of an electron confined in the core of a double walled carbon nanotube. Physica B 498, 55–58 (2016)CrossRef Shah, K.A., Bhat, B.M.U.D.: Effect of magnetic field on quantum state energies of an electron confined in the core of a double walled carbon nanotube. Physica B 498, 55–58 (2016)CrossRef
158.
go back to reference Shah, M., Fawcett, D., Sharma, S., Tripathy, S., Poinern, G.: Green synthesis of metallic nanoparticles via biological entities. Materials 8, 7278–7308 (2015)CrossRef Shah, M., Fawcett, D., Sharma, S., Tripathy, S., Poinern, G.: Green synthesis of metallic nanoparticles via biological entities. Materials 8, 7278–7308 (2015)CrossRef
159.
go back to reference Shamsi, J., et al.: Colloidal synthesis of quantum confined single crystal CsPbBr 3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 138, 7240–7243 (2016)CrossRef Shamsi, J., et al.: Colloidal synthesis of quantum confined single crystal CsPbBr 3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 138, 7240–7243 (2016)CrossRef
160.
go back to reference Shamsipur, M., Rajabi, H.R.: Study of photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet: effect of ferric ion doping. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 122, 260–267 (2014)CrossRef Shamsipur, M., Rajabi, H.R.: Study of photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet: effect of ferric ion doping. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 122, 260–267 (2014)CrossRef
161.
go back to reference Shen, J., Zhu, Y., Yang, X., Li, C.: Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686–3699 (2012)CrossRef Shen, J., Zhu, Y., Yang, X., Li, C.: Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686–3699 (2012)CrossRef
162.
go back to reference Silveiro, I., Ortega, J.M.P., De Abajo, F.J.G.: Quantum nonlocal effects in individual and interacting graphene nanoribbons. Light Sci. Appl. 4, e241 (2015) Silveiro, I., Ortega, J.M.P., De Abajo, F.J.G.: Quantum nonlocal effects in individual and interacting graphene nanoribbons. Light Sci. Appl. 4, e241 (2015)
163.
go back to reference Singh, A.K., Pal, P., Gupta, V., Yadav, T.P., Gupta, V., Singh, S.P.: Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Mater. Chem. Phys. 203, 40–48 (2018)CrossRef Singh, A.K., Pal, P., Gupta, V., Yadav, T.P., Gupta, V., Singh, S.P.: Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Mater. Chem. Phys. 203, 40–48 (2018)CrossRef
164.
go back to reference Smith, A.M., Nie, S.: Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2009)CrossRef Smith, A.M., Nie, S.: Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2009)CrossRef
165.
go back to reference Sobolev, A.M., Byzova, N.A., Goryacheva, I.Y., Zherdev, A.V.: Silanized quantum dots as labels in lateral flow test strips for C-reactive protein. Anal. Lett. 52, 1874–1887 (2019)CrossRef Sobolev, A.M., Byzova, N.A., Goryacheva, I.Y., Zherdev, A.V.: Silanized quantum dots as labels in lateral flow test strips for C-reactive protein. Anal. Lett. 52, 1874–1887 (2019)CrossRef
166.
go back to reference Spangler, L.C., Lu, L., Kiely, C.J., Berger, B.W., McIntosh, S.: Biomineralization of PbS and PbS–CdS core–shell nanocrystals and their application in quantum dot sensitized solar cells. J. Mater. Chem. A 4, 6107–6115 (2016)CrossRef Spangler, L.C., Lu, L., Kiely, C.J., Berger, B.W., McIntosh, S.: Biomineralization of PbS and PbS–CdS core–shell nanocrystals and their application in quantum dot sensitized solar cells. J. Mater. Chem. A 4, 6107–6115 (2016)CrossRef
167.
go back to reference Tayyebi, A., Akhavan, O., Lee, B.-K., Outokesh, M.: Supercritical water in top-down formation of tunable-sized graphene quantum dots applicable in effective photothermal treatments of tissues. Carbon 130, 267–272 (2018)CrossRef Tayyebi, A., Akhavan, O., Lee, B.-K., Outokesh, M.: Supercritical water in top-down formation of tunable-sized graphene quantum dots applicable in effective photothermal treatments of tissues. Carbon 130, 267–272 (2018)CrossRef
169.
go back to reference Thambiraj, S., Shankaran, R.: Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Appl. Surf. Sci. 390, 435–443 (2016)CrossRef Thambiraj, S., Shankaran, R.: Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Appl. Surf. Sci. 390, 435–443 (2016)CrossRef
170.
go back to reference Thierschmann, H., et al.: Three-terminal energy harvester with coupled quantum dots. Nat. Nanotechnol. 10, 854 (2015)CrossRef Thierschmann, H., et al.: Three-terminal energy harvester with coupled quantum dots. Nat. Nanotechnol. 10, 854 (2015)CrossRef
171.
go back to reference Tian, J., Cao, G.: Control of nanostructures and interfaces of metal oxide semiconductors for quantum-dots-sensitized solar cells. J. Phys. Chem. Lett. 6, 1859–1869 (2015)CrossRef Tian, J., Cao, G.: Control of nanostructures and interfaces of metal oxide semiconductors for quantum-dots-sensitized solar cells. J. Phys. Chem. Lett. 6, 1859–1869 (2015)CrossRef
172.
go back to reference Tikhomirov, G., Hoogland, S., Lee, P., Fischer, A., Sargent, E.H., Kelley, S.O.: DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat. Nanotechnol. 6, 485 (2011)CrossRef Tikhomirov, G., Hoogland, S., Lee, P., Fischer, A., Sargent, E.H., Kelley, S.O.: DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat. Nanotechnol. 6, 485 (2011)CrossRef
174.
go back to reference Tsoi, K.M., Dai, Q., Alman, B.A., Chan, W.C.: Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc. Chem. Res. 46, 662–671 (2012)CrossRef Tsoi, K.M., Dai, Q., Alman, B.A., Chan, W.C.: Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc. Chem. Res. 46, 662–671 (2012)CrossRef
176.
go back to reference Valizadeh, A., Mikaeili, H., Samiei, M., Farkhani, S.M., Zarghami, N., Akbarzadeh, A., Davaran, S.: Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 7, 480 (2012)CrossRef Valizadeh, A., Mikaeili, H., Samiei, M., Farkhani, S.M., Zarghami, N., Akbarzadeh, A., Davaran, S.: Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 7, 480 (2012)CrossRef
177.
go back to reference Vandarkuzhali, S.A.A., Jeyalakshmi, V., Sivaraman, G., Singaravadivel, S., Krishnamurthy, K.R., Viswanathan, B.: Highly fluorescent carbon dots from pseudo-stem of banana plant: applications as nanosensor and bio-imaging agents. Sens. Actuators B Chem. 252, 894–900 (2017)CrossRef Vandarkuzhali, S.A.A., Jeyalakshmi, V., Sivaraman, G., Singaravadivel, S., Krishnamurthy, K.R., Viswanathan, B.: Highly fluorescent carbon dots from pseudo-stem of banana plant: applications as nanosensor and bio-imaging agents. Sens. Actuators B Chem. 252, 894–900 (2017)CrossRef
178.
go back to reference Vasudevan, D., Gaddam, R.R., Trinchi, A., Cole, I.: Core–shell quantum dots: properties and applications. J. Alloy. Compd. 636, 395–404 (2015)CrossRef Vasudevan, D., Gaddam, R.R., Trinchi, A., Cole, I.: Core–shell quantum dots: properties and applications. J. Alloy. Compd. 636, 395–404 (2015)CrossRef
179.
go back to reference Vu, H.-T., Chiang, R.-K., Huang, C.-Y., Chen, C.-J., Yu, H.-C., Lien, J.-Y., Su, Y.-K.: Enhanced thermal stability of green-emission quantum-dot light-emitting diodes via composition-gradient thick-shell quantum dots. Appl. Phys. Express 9, 082101 (2016)CrossRef Vu, H.-T., Chiang, R.-K., Huang, C.-Y., Chen, C.-J., Yu, H.-C., Lien, J.-Y., Su, Y.-K.: Enhanced thermal stability of green-emission quantum-dot light-emitting diodes via composition-gradient thick-shell quantum dots. Appl. Phys. Express 9, 082101 (2016)CrossRef
180.
go back to reference Wagner, A.M., Knipe, J.M., Orive, G., Peppas, N.A.: Quantum Dots in Biomedical Applications (2019). Available at SSRN 3321961 Wagner, A.M., Knipe, J.M., Orive, G., Peppas, N.A.: Quantum Dots in Biomedical Applications (2019). Available at SSRN 3321961
181.
go back to reference Wang, C., Jiang, Z., Wei, L., Chen, Y., Jiao, J., Eastman, M., Liu, H.: Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic applications: a wet-chemical approach. Nano Energy 1, 440–447 (2012)CrossRef Wang, C., Jiang, Z., Wei, L., Chen, Y., Jiao, J., Eastman, M., Liu, H.: Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic applications: a wet-chemical approach. Nano Energy 1, 440–447 (2012)CrossRef
182.
go back to reference Wang, R., Lu, K.-Q., Tang, Z.-R., Xu, Y.-J.: Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 5, 3717–3734 (2017)CrossRef Wang, R., Lu, K.-Q., Tang, Z.-R., Xu, Y.-J.: Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 5, 3717–3734 (2017)CrossRef
183.
go back to reference Wang, S., Louie, A.Y., Kauzlarich, S.M.: Synthesis and properties of water-soluble CdSe/Zn 1-x Mn x S semiconductor quantum dots using an amphiphilic polymer. In: Colloidal Quantum Dots for Biomedical Applications II, p. 64480A. International Society for Optics and Photonics (2007) Wang, S., Louie, A.Y., Kauzlarich, S.M.: Synthesis and properties of water-soluble CdSe/Zn 1-x Mn x S semiconductor quantum dots using an amphiphilic polymer. In: Colloidal Quantum Dots for Biomedical Applications II, p. 64480A. International Society for Optics and Photonics (2007)
184.
go back to reference Wang, T., Hsieh, H., Hsieh, Y., Chiang, C., Sun, Y., Wang, C.: The in vivo biodistribution and fate of CdSe quantum dots in the murine model: a laser ablation inductively coupled plasma mass spectrometry study. Anal. Bioanal. Chem. 404, 3025–3036 (2012)CrossRef Wang, T., Hsieh, H., Hsieh, Y., Chiang, C., Sun, Y., Wang, C.: The in vivo biodistribution and fate of CdSe quantum dots in the murine model: a laser ablation inductively coupled plasma mass spectrometry study. Anal. Bioanal. Chem. 404, 3025–3036 (2012)CrossRef
188.
go back to reference Wang, Y., et al.: Novel metal doped carbon quantum dots/CdS composites for efficient photocatalytic hydrogen evolution. Nanoscale 11, 1618–1625 (2019)CrossRef Wang, Y., et al.: Novel metal doped carbon quantum dots/CdS composites for efficient photocatalytic hydrogen evolution. Nanoscale 11, 1618–1625 (2019)CrossRef
190.
go back to reference Weaver, J., Zakeri, R., Aouadi, S., Kohli, P.: Synthesis and characterization of quantum dot–polymer composites. J. Mater. Chem. 19, 3198–3206 (2009)CrossRef Weaver, J., Zakeri, R., Aouadi, S., Kohli, P.: Synthesis and characterization of quantum dot–polymer composites. J. Mater. Chem. 19, 3198–3206 (2009)CrossRef
191.
go back to reference Werner, M., Gresty, N., Pickett, N., Chalker, P., Harris, J., Naasani, I.: Multi-layer-coated quantum dot beads. Google Patents (2016) Werner, M., Gresty, N., Pickett, N., Chalker, P., Harris, J., Naasani, I.: Multi-layer-coated quantum dot beads. Google Patents (2016)
193.
go back to reference Wu, T., Tang, M.: Toxicity of quantum dots on respiratory system. Inhal. Toxicol. 26, 128–139 (2014)CrossRef Wu, T., Tang, M.: Toxicity of quantum dots on respiratory system. Inhal. Toxicol. 26, 128–139 (2014)CrossRef
195.
go back to reference Wu, Y.L., Lim, C.S., Fu, S., Tok, A.I.Y., Lau, H.M., Boey, F.Y.C., Zeng, X.T.: Surface modifications of ZnO quantum dots for bio-imaging. Nanotechnology 18, 215604 (2007)CrossRef Wu, Y.L., Lim, C.S., Fu, S., Tok, A.I.Y., Lau, H.M., Boey, F.Y.C., Zeng, X.T.: Surface modifications of ZnO quantum dots for bio-imaging. Nanotechnology 18, 215604 (2007)CrossRef
197.
go back to reference Xie, J., et al.: Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 11, 9176–9182 (2017)CrossRef Xie, J., et al.: Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 11, 9176–9182 (2017)CrossRef
198.
go back to reference Xu, M., Li, Z., Zhu, X., Hu, N., Wei, H., Yang, Z., Zhang, Y.: Hydrothermal/solvothermal synthesis of graphene quantum dots and their biological applications. Nano Biomed. Eng. 5 (2013) Xu, M., Li, Z., Zhu, X., Hu, N., Wei, H., Yang, Z., Zhang, Y.: Hydrothermal/solvothermal synthesis of graphene quantum dots and their biological applications. Nano Biomed. Eng. 5 (2013)
200.
go back to reference Xu, S., Wang, X., Chua, S., Wang, C., Fan, W., Jiang, J., Xie, X.: Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots. Appl. Phys. Lett. 72, 3335–3337 (1998)CrossRef Xu, S., Wang, X., Chua, S., Wang, C., Fan, W., Jiang, J., Xie, X.: Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots. Appl. Phys. Lett. 72, 3335–3337 (1998)CrossRef
204.
go back to reference Yu, H., Shi, R., Zhao, Y., Waterhouse, G.I., Wu, L.Z., Tung, C.H., Zhang, T.: Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 28, 9454–9477 (2016)CrossRef Yu, H., Shi, R., Zhao, Y., Waterhouse, G.I., Wu, L.Z., Tung, C.H., Zhang, T.: Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 28, 9454–9477 (2016)CrossRef
205.
go back to reference Yu, H., et al.: Carbon quantum dots/TiO 2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2, 3344–3351 (2014)CrossRef Yu, H., et al.: Carbon quantum dots/TiO 2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2, 3344–3351 (2014)CrossRef
206.
go back to reference Yuan, F., et al.: Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 9, 2249 (2018)CrossRef Yuan, F., et al.: Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 9, 2249 (2018)CrossRef
207.
go back to reference Yuan, G., Gómez, D., Kirkwood, N., Mulvaney, P.: Tuning single quantum dot emission with a micromirror. Nano Lett. 18, 1010–1017 (2018)CrossRef Yuan, G., Gómez, D., Kirkwood, N., Mulvaney, P.: Tuning single quantum dot emission with a micromirror. Nano Lett. 18, 1010–1017 (2018)CrossRef
209.
go back to reference Zeng, Z., et al.: Unraveling the cooperative synergy of zero-dimensional graphene quantum dots and metal nanocrystals enabled by layer-by-layer assembly. J. Mater. Chem. A 6, 1700–1713 (2018)CrossRef Zeng, Z., et al.: Unraveling the cooperative synergy of zero-dimensional graphene quantum dots and metal nanocrystals enabled by layer-by-layer assembly. J. Mater. Chem. A 6, 1700–1713 (2018)CrossRef
211.
go back to reference Zhang, J., Hu, J., Zhu, Y.-F., Liu, Q., Zhang, H., Du, R.-G., Lin, C.-J.: Fabrication of CdTe/ZnS core/shell quantum dots sensitized TiO2 nanotube films for photocathodic protection of stainless steel. Corros. Sci. 99, 118–124 (2015)CrossRef Zhang, J., Hu, J., Zhu, Y.-F., Liu, Q., Zhang, H., Du, R.-G., Lin, C.-J.: Fabrication of CdTe/ZnS core/shell quantum dots sensitized TiO2 nanotube films for photocathodic protection of stainless steel. Corros. Sci. 99, 118–124 (2015)CrossRef
212.
go back to reference Zhang, P.: Scaling for quantum tunneling current in nano-and subnano-scale plasmonic junctions. Sci. Rep. 5, 9826 (2015)CrossRef Zhang, P.: Scaling for quantum tunneling current in nano-and subnano-scale plasmonic junctions. Sci. Rep. 5, 9826 (2015)CrossRef
214.
go back to reference Zhang, W., Zhang, H., Feng, Y., Zhong, X.: Scalable single-step noninjection synthesis of high-quality core/shell quantum dots with emission tunable from violet to near infrared. ACS Nano 6, 11066–11073 (2012)CrossRef Zhang, W., Zhang, H., Feng, Y., Zhong, X.: Scalable single-step noninjection synthesis of high-quality core/shell quantum dots with emission tunable from violet to near infrared. ACS Nano 6, 11066–11073 (2012)CrossRef
215.
go back to reference Zhang, X., et al.: Black phosphorus quantum dots. Angew. Chem. Int. Ed. 54, 3653–3657 (2015)CrossRef Zhang, X., et al.: Black phosphorus quantum dots. Angew. Chem. Int. Ed. 54, 3653–3657 (2015)CrossRef
216.
go back to reference Zhang, Z., Zheng, T., Li, X., Xu, J., Zeng, H.: Progress of carbon quantum dots in photocatalysis applications. Part. Part. Syst. Charact. 33, 457–472 (2016)CrossRef Zhang, Z., Zheng, T., Li, X., Xu, J., Zeng, H.: Progress of carbon quantum dots in photocatalysis applications. Part. Part. Syst. Charact. 33, 457–472 (2016)CrossRef
219.
go back to reference Zhao, P., Li, X., Baryshnikov, G., Wu, B., Ågren, H., Zhang, J., Zhu, L.: One-step solvothermal synthesis of high-emissive amphiphilic carbon dots via rigidity derivation. Chem. Sci. 9, 1323–1329 (2018)CrossRef Zhao, P., Li, X., Baryshnikov, G., Wu, B., Ågren, H., Zhang, J., Zhu, L.: One-step solvothermal synthesis of high-emissive amphiphilic carbon dots via rigidity derivation. Chem. Sci. 9, 1323–1329 (2018)CrossRef
220.
go back to reference Zheng, J., Zhang, C., Dickson, R.M.: Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 93, 077402 (2004)CrossRef Zheng, J., Zhang, C., Dickson, R.M.: Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 93, 077402 (2004)CrossRef
221.
go back to reference Zheng, X.T., Ananthanarayanan, A., Luo, K.Q., Chen, P.: Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11, 1620–1636 (2015)CrossRef Zheng, X.T., Ananthanarayanan, A., Luo, K.Q., Chen, P.: Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11, 1620–1636 (2015)CrossRef
222.
223.
go back to reference Zheng, Y., Gao, S., Ying, J.Y.: Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv. Mater. 19, 376–380 (2007)CrossRef Zheng, Y., Gao, S., Ying, J.Y.: Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv. Mater. 19, 376–380 (2007)CrossRef
224.
go back to reference Zhou, J., Yang, Y., Zhang, C-y: Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem. Rev. 115, 11669–11717 (2015)CrossRef Zhou, J., Yang, Y., Zhang, C-y: Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem. Rev. 115, 11669–11717 (2015)CrossRef
226.
go back to reference Zhu, S., Song, Y., Wang, J., Wan, H., Zhang, Y., Ning, Y., Yang, B.: Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 13, 10–14 (2017)CrossRef Zhu, S., Song, Y., Wang, J., Wan, H., Zhang, Y., Ning, Y., Yang, B.: Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 13, 10–14 (2017)CrossRef
229.
go back to reference Zhu, S., et al.: Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv. Func. Mater. 22, 4732–4740 (2012)CrossRef Zhu, S., et al.: Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv. Func. Mater. 22, 4732–4740 (2012)CrossRef
230.
go back to reference Zhu, T., Wang, A., Kirsten, K., Cleaver, G., Sheng, Q.: Primordial non-Gaussianity and power asymmetry with quantum gravitational effects in loop quantum cosmology. Phys. Rev. D 97, 043501 (2018)MathSciNetCrossRef Zhu, T., Wang, A., Kirsten, K., Cleaver, G., Sheng, Q.: Primordial non-Gaussianity and power asymmetry with quantum gravitational effects in loop quantum cosmology. Phys. Rev. D 97, 043501 (2018)MathSciNetCrossRef
231.
go back to reference Zhuang, L., Guo, L., Chou, S.Y.: Silicon single-electron quantum-dot transistor switch operating at room temperature. Appl. Phys. Lett. 72, 1205–1207 (1998)CrossRef Zhuang, L., Guo, L., Chou, S.Y.: Silicon single-electron quantum-dot transistor switch operating at room temperature. Appl. Phys. Lett. 72, 1205–1207 (1998)CrossRef
Metadata
Title
Quantum Dots Synthesis and Application
Authors
Jaison Jeevanandam
Satheesh Kumar Balu
Swetha Andra
Michael K. Danquah
Manisha Vidyavathi
Murugesan Muthalagu
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-62761-4_9

Premium Partners