Skip to main content
Top
Published in: Quantum Information Processing 3/2015

01-03-2015

Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state

Authors: Dong-fen Li, Rui-jin Wang, Feng-li Zhang, Fu-hu Deng, Edward Baagyere

Published in: Quantum Information Processing | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we proposed a scheme for quantum information splitting of arbitrary two-qubit by using four-qubit cluster state and Bell-state as quantum channel. The splitter (Alice) and two receivers (Bob and Charlie) safely share a four-qubit cluster and Bell-state as quantum channel. Then, the sender Alice first performs Bell-state measurement (BSMs) on her qubit pairs, respectively, and tells the results to the receiver Bob and Charlie via a classical channel. But it is impossible for Bob to reconstruct the original state with local operations without help from Charlie. If Charlie allows Bob to reconstruct the original state information, he also needs to perform BSMs on his qubits and tell Bob the measurement result. Using the measurement results from Alice and Charlie, Bob can reconstruct the original state by applying the appropriate unitary operation. The scheme is tested against various attack scenarios such as eavesdropping attack, eavesdropping in the presence of a malicious attacker and even in the presence of a dishonest agent and found to be secure in all these cases. In addition, the deterministic quantum information splitting of arbitrary two-qubit state in cavity quantum electrodynamics is implemented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cao, Z.L., Yang, M., Guo, G.C.: The scheme for realizing probabilistic teleportation of atomic states and purifying the quantum channel on cavity QED. Phys. Lett. A 308(5), 349–354 (2003)CrossRefADSMATHMathSciNet Cao, Z.L., Yang, M., Guo, G.C.: The scheme for realizing probabilistic teleportation of atomic states and purifying the quantum channel on cavity QED. Phys. Lett. A 308(5), 349–354 (2003)CrossRefADSMATHMathSciNet
2.
go back to reference Bennett, C.H.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)CrossRefADSMATHMathSciNet Bennett, C.H.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)CrossRefADSMATHMathSciNet
3.
go back to reference Rao, D.D.B., Ghosh, S., Panigrahi, P.K.: Generation of entangled channels for perfect teleportation using multielectron quantum dots. Phys. Rev. A 78(4), 042328 (2008)CrossRefADS Rao, D.D.B., Ghosh, S., Panigrahi, P.K.: Generation of entangled channels for perfect teleportation using multielectron quantum dots. Phys. Rev. A 78(4), 042328 (2008)CrossRefADS
4.
go back to reference Ye, L., Guo, G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71(3), 034304 (2005)CrossRefADS Ye, L., Guo, G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71(3), 034304 (2005)CrossRefADS
5.
go back to reference Samal, J.R., Gupta, M., Panigrahi, P.K., Kumar, A.: Non-destructive discrimination of Bell states by NMR using a single ancilla qubit. J. Phys. B At. Mol. Opt. Phys. 43, 095508 (2010)CrossRefADS Samal, J.R., Gupta, M., Panigrahi, P.K., Kumar, A.: Non-destructive discrimination of Bell states by NMR using a single ancilla qubit. J. Phys. B At. Mol. Opt. Phys. 43, 095508 (2010)CrossRefADS
6.
go back to reference Prasath, E.S., Muralidharan, S., Mitra, C., Panigrahi, P.K.: Multipartite entangled magnon states as quantum communication channels. Quantum Inf. Process. 11(2), 397–410 (2012)CrossRefMathSciNet Prasath, E.S., Muralidharan, S., Mitra, C., Panigrahi, P.K.: Multipartite entangled magnon states as quantum communication channels. Quantum Inf. Process. 11(2), 397–410 (2012)CrossRefMathSciNet
7.
go back to reference Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Efficient symmetric five-party quantum state sharing of an arbitrary m-qubit state. Int. J. Theor. Phys. 50(11), 3329–3336 (2011)CrossRefMATHMathSciNet Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Efficient symmetric five-party quantum state sharing of an arbitrary m-qubit state. Int. J. Theor. Phys. 50(11), 3329–3336 (2011)CrossRefMATHMathSciNet
8.
go back to reference Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49(10), 2592–2599 (2010)CrossRefMATHMathSciNet Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49(10), 2592–2599 (2010)CrossRefMATHMathSciNet
9.
go back to reference Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10(1), 53–61 (2011)CrossRefMATHMathSciNet Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10(1), 53–61 (2011)CrossRefMATHMathSciNet
10.
go back to reference Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297–305 (2011)CrossRefMATHMathSciNet Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297–305 (2011)CrossRefMATHMathSciNet
11.
go back to reference Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state. Quantum Inf. Process. 11(2), 563–569 (2012)CrossRefMATHMathSciNet Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state. Quantum Inf. Process. 11(2), 563–569 (2012)CrossRefMATHMathSciNet
12.
go back to reference Hou, K., Liu, G.H., Zhang, X.X., Sheng, S.Q.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit steta using multiqubit cluster states. Quantum Inf. Process. 10(4), 463–473 (2011)CrossRefMATHMathSciNet Hou, K., Liu, G.H., Zhang, X.X., Sheng, S.Q.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit steta using multiqubit cluster states. Quantum Inf. Process. 10(4), 463–473 (2011)CrossRefMATHMathSciNet
13.
go back to reference Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)CrossRefMathSciNet Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)CrossRefMathSciNet
14.
go back to reference Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multi-qubit state using non-maximally entangled GHZ states. Eur. Phys. J. D 42(2), 333–340 (2007)CrossRefADSMathSciNet Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multi-qubit state using non-maximally entangled GHZ states. Eur. Phys. J. D 42(2), 333–340 (2007)CrossRefADSMathSciNet
15.
go back to reference Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)CrossRefADS Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)CrossRefADS
16.
go back to reference Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)CrossRefADS Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)CrossRefADS
17.
go back to reference Menon, J.V., Paul, N., Karumanchi, S., Muralidhara, S., Panigrah, P.K.: Quantum Tasks Using Six Qubit Cluster States. arXiv:0906.3874(2009) Menon, J.V., Paul, N., Karumanchi, S., Muralidhara, S., Panigrah, P.K.: Quantum Tasks Using Six Qubit Cluster States. arXiv:​0906.​3874(2009)
18.
20.
go back to reference Zhang, B.B., Liu, Y.: Economic and deterministic quantum teleportation of arbitrary bipartite pure and mixed state with shared cluster entanglement. Int. J. Theor. Phys. 48, 2644–2651 (2009)CrossRefMATH Zhang, B.B., Liu, Y.: Economic and deterministic quantum teleportation of arbitrary bipartite pure and mixed state with shared cluster entanglement. Int. J. Theor. Phys. 48, 2644–2651 (2009)CrossRefMATH
21.
go back to reference Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)CrossRefADS Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)CrossRefADS
22.
go back to reference Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)CrossRefADS Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)CrossRefADS
23.
go back to reference Cheung, C.V., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)CrossRefADS Cheung, C.V., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)CrossRefADS
24.
go back to reference Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six-qubit cluster states. Quantum Inf. Process. 10, 619–632 (2011)CrossRefMATHMathSciNet Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six-qubit cluster states. Quantum Inf. Process. 10, 619–632 (2011)CrossRefMATHMathSciNet
25.
go back to reference Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of quantum information using N-qubit linear cluster states. Opt. Commun. 284(4), 1082–1085 (2011)CrossRefADS Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of quantum information using N-qubit linear cluster states. Opt. Commun. 284(4), 1082–1085 (2011)CrossRefADS
26.
go back to reference Ben-Or, M., Crpeau, C., Gottesman, D., Hassidim, A., Smith, A.: In: Proceedings of 47th Annual IEEE Symposium on the Foundations of Computer Science (FOCS06), pp. 249–260. IEEE Press, New York (2006) Ben-Or, M., Crpeau, C., Gottesman, D., Hassidim, A., Smith, A.: In: Proceedings of 47th Annual IEEE Symposium on the Foundations of Computer Science (FOCS06), pp. 249–260. IEEE Press, New York (2006)
27.
go back to reference Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49(10), 2592–2599 (2010)CrossRefMATHMathSciNet Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49(10), 2592–2599 (2010)CrossRefMATHMathSciNet
28.
go back to reference Wiesner, S.: SIGACT news. Conjug. Coding 15, 78–88 (1983) Wiesner, S.: SIGACT news. Conjug. Coding 15, 78–88 (1983)
29.
go back to reference Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)CrossRefADS Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)CrossRefADS
30.
go back to reference Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination quantum teleportation. Nature 430, 54 (2004)CrossRefADS Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination quantum teleportation. Nature 430, 54 (2004)CrossRefADS
31.
go back to reference Deng, F.G., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)CrossRefADS Deng, F.G., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)CrossRefADS
32.
go back to reference Yin, X.F., Liu, Y.M., Zhang, W., Zhang, Z.J.: Simplified four-qubit cluster state for splitting arbitrary single-qubit information. Commun. Theor. Phys. 53, 49–53 (2010)CrossRefADSMATH Yin, X.F., Liu, Y.M., Zhang, W., Zhang, Z.J.: Simplified four-qubit cluster state for splitting arbitrary single-qubit information. Commun. Theor. Phys. 53, 49–53 (2010)CrossRefADSMATH
33.
go back to reference Nie, Y.Y., Li, Y.H., Lin, J.C., Sang, M.H.: Quantum state sharing of an arbitrary four-qubit GHZ-type state by using a four-qubit cluster state. Quantum Inf. Process. 10, 603–608 (2011)CrossRefMATHMathSciNet Nie, Y.Y., Li, Y.H., Lin, J.C., Sang, M.H.: Quantum state sharing of an arbitrary four-qubit GHZ-type state by using a four-qubit cluster state. Quantum Inf. Process. 10, 603–608 (2011)CrossRefMATHMathSciNet
34.
go back to reference Yang, C.P., Chu, S.I., Han, S.Y.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70(2), 022329 (2004)CrossRefADS Yang, C.P., Chu, S.I., Han, S.Y.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70(2), 022329 (2004)CrossRefADS
35.
go back to reference Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A 42(11), 115303 (2009)CrossRefADSMathSciNet Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A 42(11), 115303 (2009)CrossRefADSMathSciNet
36.
go back to reference Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75(5), 052306 (2007)CrossRefADS Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75(5), 052306 (2007)CrossRefADS
37.
go back to reference Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)CrossRefADS Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)CrossRefADS
38.
go back to reference Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72(4), 044301 (2005)CrossRefADSMathSciNet Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72(4), 044301 (2005)CrossRefADSMathSciNet
39.
go back to reference Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283(9), 1961–1965 (2010)CrossRefADS Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283(9), 1961–1965 (2010)CrossRefADS
40.
go back to reference Muralidharan, S., Panigrahi, P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)CrossRefADS Muralidharan, S., Panigrahi, P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)CrossRefADS
41.
go back to reference Wang, X.W., Peng, Z.H., Jia, C.X., Wang, Y.H., Liu, X.J.: Scheme for implementing controlled teleportation and dense coding with genuine pentaqubit entangled state in cavity QED. Opt. Commun. 282(4), 670–673 (2009)CrossRefADS Wang, X.W., Peng, Z.H., Jia, C.X., Wang, Y.H., Liu, X.J.: Scheme for implementing controlled teleportation and dense coding with genuine pentaqubit entangled state in cavity QED. Opt. Commun. 282(4), 670–673 (2009)CrossRefADS
42.
go back to reference Li, D.F., Wang, R.J., Zhang, F.L.: (2014) Quantum information splitting of a Two-qubit Bell state using a four-qubit Entangled state. Chin. Phys. C (1), 010601 (accepted) Li, D.F., Wang, R.J., Zhang, F.L.: (2014) Quantum information splitting of a Two-qubit Bell state using a four-qubit Entangled state. Chin. Phys. C (1), 010601 (accepted)
43.
go back to reference Li, D.F., Wang, R.J., Zhang, F.L.: Quantum information splitting of arbitrary three-qubit state by using four-qubit cluster state and GHZ-state. Int. J. Theor. Phys. (published online), 1–12 (2014) Li, D.F., Wang, R.J., Zhang, F.L.: Quantum information splitting of arbitrary three-qubit state by using four-qubit cluster state and GHZ-state. Int. J. Theor. Phys. (published online), 1–12 (2014)
44.
go back to reference Li, D.F., Wang, R.J., Zhang, F.L.: Quantum information splitting of arbitrary three-qubit state by using seven-qubit entangled state. Int. J. Theor. Phys. (published online), 1–8 (2014) Li, D.F., Wang, R.J., Zhang, F.L.: Quantum information splitting of arbitrary three-qubit state by using seven-qubit entangled state. Int. J. Theor. Phys. (published online), 1–8 (2014)
45.
go back to reference Wang, X.P., Sang, M.H.: Splitting an arbitrary three-qubit state by using seven-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 53, 1064–1069 (2014)CrossRefMATH Wang, X.P., Sang, M.H.: Splitting an arbitrary three-qubit state by using seven-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 53, 1064–1069 (2014)CrossRefMATH
46.
47.
go back to reference Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49, 2592–2599 (2010)CrossRefMATHMathSciNet Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49, 2592–2599 (2010)CrossRefMATHMathSciNet
Metadata
Title
Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state
Authors
Dong-fen Li
Rui-jin Wang
Feng-li Zhang
Fu-hu Deng
Edward Baagyere
Publication date
01-03-2015
Publisher
Springer US
Published in
Quantum Information Processing / Issue 3/2015
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-014-0906-8

Other articles of this Issue 3/2015

Quantum Information Processing 3/2015 Go to the issue