Skip to main content
Top

2024 | OriginalPaper | Chapter

Quantum K-Nearest Neighbors for Object Recognition

Authors : Ahmad Zaki Al Muntazhar, Dwi Ratna Sulistyaningrum, Subiono

Published in: Applied and Computational Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Object recognition research is essential to simulate human vision capabilities on computers or robots. As time goes by, this research is getting more sophisticated, but it encounters challenges in the form of 3V: (volume) large volume of data; (variety) large variety of data; (velocity); and the need for fast data processing. That matter has led scientists to start looking for solutions to these problems. On the other hand, the development of quantum computing has opened up new opportunities in Quantum Machine Learning (QML), which combines the power of quantum computing with machine learning techniques. One of the exciting algorithms in QML is Quantum k-Nearest Neighbors (QKNN), which can be used in image-based object recognition. However, the use of QKNN in image-based object recognition is still limited and needs to be developed further. This research aims to apply and analyze the quantum computing-based QKNN algorithm in image-based object recognition. The steps include representing the image as quantum states, calculating the distance between two quantum states using the fidelity method, and determining the label using a majority vote based on the closest distance. In this study, the test of QKNN algorithm used 84 synthetic image data sets with a ratio of 64:20. The experimental results on the 2-class variety, the QKNN succeeded on average 0.80, show that the QKNN algorithm can recognize objects with an accuracy rate of 0.65 on the 4-class data set. Based on these results, there is a need for further study in terms of data fidelity and data preprocessing techniques to improve QKNN’s performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Bennamoun, M., Mamic, G.J.: Object Recognition: Fundamentals and Case Studies, 1st edn. Advances in Pattern Recognition, Springer-Verlag, London (2002) Bennamoun, M., Mamic, G.J.: Object Recognition: Fundamentals and Case Studies, 1st edn. Advances in Pattern Recognition, Springer-Verlag, London (2002)
3.
go back to reference Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)CrossRef Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)CrossRef
4.
go back to reference Caron, S., Acun, A.: Building a quantum KNN classifier with Qiskit: theoretical gains put to practice (2021) Caron, S., Acun, A.: Building a quantum KNN classifier with Qiskit: theoretical gains put to practice (2021)
5.
go back to reference Chen, X.W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014)CrossRef Chen, X.W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014)CrossRef
6.
go back to reference Dang, Y., Jiang, N., Hu, H., Ji, Z., Zhang, W.: Image classification based on quantum k-nearest-neighbor algorithm. Quantum Inf. Process. 17, 1–18 (2018)CrossRef Dang, Y., Jiang, N., Hu, H., Ji, Z., Zhang, W.: Image classification based on quantum k-nearest-neighbor algorithm. Quantum Inf. Process. 17, 1–18 (2018)CrossRef
7.
go back to reference Emily Grumbling, M.H.: Quantum Computing: Progress and Prospects. National Academies of Sciences Engineering, and Medicine (2019) Emily Grumbling, M.H.: Quantum Computing: Progress and Prospects. National Academies of Sciences Engineering, and Medicine (2019)
8.
go back to reference Gambetta, J.: Ibm’s roadmap for scaling quantum technology. IBM Research Blog (2020) Gambetta, J.: Ibm’s roadmap for scaling quantum technology. IBM Research Blog (2020)
10.
go back to reference Huang, H.Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., McClean, J.R.: Power of data in quantum machine learning. Nat. Commun. 12(1), 2631 (2021)CrossRef Huang, H.Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., McClean, J.R.: Power of data in quantum machine learning. Nat. Commun. 12(1), 2631 (2021)CrossRef
11.
go back to reference Kelly, J., Chen, Z., Chiaro, B., Foxen, B., Martinis, J., Google quantum hardware team team: operating and characterizing of a 72 superconducting qubit processor “Bristlecone”: part 1. In: APS March Meeting Abstracts. APS Meeting Abstracts, vol. 2019, p. A42.002 (2019) Kelly, J., Chen, Z., Chiaro, B., Foxen, B., Martinis, J., Google quantum hardware team team: operating and characterizing of a 72 superconducting qubit processor “Bristlecone”: part 1. In: APS March Meeting Abstracts. APS Meeting Abstracts, vol. 2019, p. A42.002 (2019)
12.
go back to reference Liang, Y.C., Yeh, Y.H., Mendonça, P.E., Teh, R.Y., Reid, M.D., Drummond, P.D.: Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82(7), 076001 (2019)MathSciNetCrossRef Liang, Y.C., Yeh, Y.H., Mendonça, P.E., Teh, R.Y., Reid, M.D., Drummond, P.D.: Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82(7), 076001 (2019)MathSciNetCrossRef
14.
go back to reference Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers, vol. 17. Springer (2018) Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers, vol. 17. Springer (2018)
15.
go back to reference Treiber, M.A.: An Introduction to Object Recognition: Selected Algorithms for a Wide Variety of Applications, 1st edn. Advances in Pattern Recognition, Springer-Verlag, London (2010) Treiber, M.A.: An Introduction to Object Recognition: Selected Algorithms for a Wide Variety of Applications, 1st edn. Advances in Pattern Recognition, Springer-Verlag, London (2010)
16.
go back to reference Wong, H.Y.: Introduction to Quantum Computing: From a Layperson to a Programmer in 30 Steps. Springer Nature (2022) Wong, H.Y.: Introduction to Quantum Computing: From a Layperson to a Programmer in 30 Steps. Springer Nature (2022)
17.
go back to reference Zhou, N.R., Liu, X.X., Chen, Y.L., Du, N.S.: Quantum k-nearest-neighbor image classification algorithm based on kl transform. Int. J. Theor. Phys. 60, 1209–1224 (2021)CrossRef Zhou, N.R., Liu, X.X., Chen, Y.L., Du, N.S.: Quantum k-nearest-neighbor image classification algorithm based on kl transform. Int. J. Theor. Phys. 60, 1209–1224 (2021)CrossRef
Metadata
Title
Quantum K-Nearest Neighbors for Object Recognition
Authors
Ahmad Zaki Al Muntazhar
Dwi Ratna Sulistyaningrum
Subiono
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2136-8_11

Premium Partners