Skip to main content
Top
Published in: Quantum Information Processing 3/2015

01-03-2015

Quantum knots and the number of knot mosaics

Authors: Seungsang Oh, Kyungpyo Hong, Ho Lee, Hwa Jeong Lee

Published in: Quantum Information Processing | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lomonaco and Kauffman developed a knot mosaic system to introduce a precise and workable definition of a quantum knot system. This definition is intended to represent an actual physical quantum system. A knot \((m,n)\)-mosaic is an \(m \times n\) matrix of mosaic tiles (\(T_0\) through \(T_{10}\) depicted in the introduction) representing a knot or a link by adjoining properly that is called suitably connected. \(D^{(m,n)}\) is the total number of all knot \((m,n)\)-mosaics. This value indicates the dimension of the Hilbert space of these quantum knot system. \(D^{(m,n)}\) is already found for \(m,n \le 6\) by the authors. In this paper, we construct an algorithm producing the precise value of \(D^{(m,n)}\) for \(m,n \ge 2\) that uses recurrence relations of state matrices that turn out to be remarkably efficient to count knot mosaics.
$$\begin{aligned} D^{(m,n)} = 2 \, \Vert (X_{m-2}+O_{m-2})^{n-2} \Vert \end{aligned}$$
where \(2^{m-2} \times 2^{m-2}\) matrices \(X_{m-2}\) and \(O_{m-2}\) are defined by
$$\begin{aligned} X_{k+1} = \begin{bmatrix} X_k&O_k \\ O_k&X_k \end{bmatrix} \ \hbox {and } \ O_{k+1} = \begin{bmatrix} O_k&X_k \\ X_k&4 \, O_k \end{bmatrix} \end{aligned}$$
for \(k=0,1, \cdots , m-3\), with \(1 \times 1\) matrices \(X_0 = \begin{bmatrix} 1 \end{bmatrix}\) and \(O_0 = \begin{bmatrix} 1 \end{bmatrix}\). Here \(\Vert N\Vert \) denotes the sum of all entries of a matrix \(N\). For \(n=2\), \((X_{m-2}+O_{m-2})^0\) means the identity matrix of size \(2^{m-2} \times 2^{m-2}\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Hong, K., Lee, H., Lee, H.J., Oh, S.: Upper bound on the total number of knot \(n\)- mosaics. J. Knot Theory Ramif. (in the press) Hong, K., Lee, H., Lee, H.J., Oh, S.: Upper bound on the total number of knot \(n\)- mosaics. J. Knot Theory Ramif. (in the press)
3.
4.
go back to reference Jones, V.: A polynomial invariant for links via von Neumann algebras. Bull. Am. Math. Soc. 129, 103–112 (1985)CrossRef Jones, V.: A polynomial invariant for links via von Neumann algebras. Bull. Am. Math. Soc. 129, 103–112 (1985)CrossRef
5.
go back to reference Jones, V.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335–338 (1987)CrossRefMATH Jones, V.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335–338 (1987)CrossRefMATH
6.
7.
go back to reference Kauffman, L.: Knots and Physics, 3rd edn. World Scientific, Singapore (2001)MATH Kauffman, L.: Knots and Physics, 3rd edn. World Scientific, Singapore (2001)MATH
8.
go back to reference Kauffman, L.: Quantum computing and the Jones polynomial, in quantum computation and information. AMS CONM. 305, 101–137 (2002) Kauffman, L.: Quantum computing and the Jones polynomial, in quantum computation and information. AMS CONM. 305, 101–137 (2002)
10.
go back to reference Lee, H.J., Hong, K., Lee, H., Oh, S.: Mosaic number of knots. J. Knot Theory Ramif. (in the press) Lee, H.J., Hong, K., Lee, H., Oh, S.: Mosaic number of knots. J. Knot Theory Ramif. (in the press)
11.
12.
go back to reference Lomonaco, S., Kauffman, L.: Quantum knots, in quantum information and computation II. Proc. SPIE. 5436, 268–284 (2004) Lomonaco, S., Kauffman, L.: Quantum knots, in quantum information and computation II. Proc. SPIE. 5436, 268–284 (2004)
13.
go back to reference Lomonaco, S., Kauffman, L.: A 3-stranded quantum algorithm for the Jones polynomial. Proc. SPIE. 6573, 1–13 (2007) Lomonaco, S., Kauffman, L.: A 3-stranded quantum algorithm for the Jones polynomial. Proc. SPIE. 6573, 1–13 (2007)
15.
go back to reference Lomonaco, S., Kauffman, L.: Quantum knots and lattices, or a blueprint for quantum systems that do rope tricks. Proc. Symp. Appl. Math. 68, 209–276 (2010)CrossRefMathSciNet Lomonaco, S., Kauffman, L.: Quantum knots and lattices, or a blueprint for quantum systems that do rope tricks. Proc. Symp. Appl. Math. 68, 209–276 (2010)CrossRefMathSciNet
16.
go back to reference Lomonaco, S., Kauffman, L.: Quantizing knots and beyond, in quantum information and computation IX. Proc. SPIE. 8057, 1–14 (2011) Lomonaco, S., Kauffman, L.: Quantizing knots and beyond, in quantum information and computation IX. Proc. SPIE. 8057, 1–14 (2011)
17.
go back to reference Oh, S.: Quantum knot mosaics and the growth constant (Preprint) Oh, S.: Quantum knot mosaics and the growth constant (Preprint)
18.
go back to reference Oh, S., Hong, K.: Enumeration of graph mosaics (Preprint) Oh, S., Hong, K.: Enumeration of graph mosaics (Preprint)
19.
go back to reference Oh, S., Hong, K., Lee, H., Lee, H.J., Yeon, M.J.: Quantum knots and toroidal mosaics (Preprint) Oh, S., Hong, K., Lee, H., Lee, H.J., Yeon, M.J.: Quantum knots and toroidal mosaics (Preprint)
20.
go back to reference Shor, P., Jordan, S.: Estimating Jones polynomials is a complete problem for one clean qubit. Quantum Inf. Comput. 8, 681–714 (2008)MATHMathSciNet Shor, P., Jordan, S.: Estimating Jones polynomials is a complete problem for one clean qubit. Quantum Inf. Comput. 8, 681–714 (2008)MATHMathSciNet
Metadata
Title
Quantum knots and the number of knot mosaics
Authors
Seungsang Oh
Kyungpyo Hong
Ho Lee
Hwa Jeong Lee
Publication date
01-03-2015
Publisher
Springer US
Published in
Quantum Information Processing / Issue 3/2015
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-014-0895-7

Other articles of this Issue 3/2015

Quantum Information Processing 3/2015 Go to the issue