Skip to main content
Top
Published in:

20-10-2021 | Original Paper

Quantum MDS and synchronizable codes from cyclic codes of length \(5p^s\) over \(\mathbb F_{p^m}\)

Authors: Hai Q. Dinh, Bac T. Nguyen, Roengchai Tansuchat

Published in: Applicable Algebra in Engineering, Communication and Computing | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For any odd prime \(p\not =5\), the structures of cyclic codes of length \(5p^s\) over \(\mathbb F_{p^m}\) are applied to construct quantum error-correcting codes (briefly, QEC codes). Some new QEC codes are provided in the sense that their parameters are different from all the previous constructions. We give all quantum maximum-distance-separable (briefly, qMDS codes) constructed by the CSS construction. We also construct quantum synchronizable codes (briefly, QSCs). To enrich the variety of available QSCs, many new QSCs are constructed to illustrate our results. Among them, there are QSCs codes with shorter lengths and much larger minimum distances than known primitive narrow-sense BCH codes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ashikhmin, A., Knill, E.: Nonbinary quantum stablizer codes. IEEE Trans. Inf. Theory 47, 3065–3072 (2001)MATH Ashikhmin, A., Knill, E.: Nonbinary quantum stablizer codes. IEEE Trans. Inf. Theory 47, 3065–3072 (2001)MATH
2.
go back to reference Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wooters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)MathSciNetMATH Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wooters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)MathSciNetMATH
3.
go back to reference Berman,S.D.: “Semisimple cyclic and Abelian codes. II,” Kibernetika (Kiev) Vol 3, pp. 21-30, 1967 (Russian). English translation: Cybernetics 3, pp. 17-23, 1967 Berman,S.D.: “Semisimple cyclic and Abelian codes. II,” Kibernetika (Kiev) Vol 3, pp. 21-30, 1967 (Russian). English translation: Cybernetics 3, pp. 17-23, 1967
4.
go back to reference Bouwmeester, D., Pan, J., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon greenberger-horne-zeilinger entanglement. Phys. Rev. Lett. 82, 1345 (1999)MathSciNetMATH Bouwmeester, D., Pan, J., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon greenberger-horne-zeilinger entanglement. Phys. Rev. Lett. 82, 1345 (1999)MathSciNetMATH
5.
go back to reference Bregni, S.: Synchronization of digital telecommunications networks. Wiley, New York, U.S. (2002) Bregni, S.: Synchronization of digital telecommunications networks. Wiley, New York, U.S. (2002)
6.
go back to reference Brun, T., Devetak, I., Hsieh, H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)MathSciNetMATH Brun, T., Devetak, I., Hsieh, H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)MathSciNetMATH
8.
go back to reference Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1106 (1996) Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1106 (1996)
9.
go back to reference Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory 44, 1369–1387 (1998)MathSciNetMATH Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory 44, 1369–1387 (1998)MathSciNetMATH
10.
go back to reference Castagnoli, G., Massey, J.L., Schoeller, P.A., von Seemann, N.: On repeated-root cyclic codes. IEEE Trans. Inform. Theory 37, 337–342 (1991)MathSciNetMATH Castagnoli, G., Massey, J.L., Schoeller, P.A., von Seemann, N.: On repeated-root cyclic codes. IEEE Trans. Inform. Theory 37, 337–342 (1991)MathSciNetMATH
11.
go back to reference Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16, 303 (2017)MathSciNetMATH Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16, 303 (2017)MathSciNetMATH
12.
go back to reference Chen, B., Ling, S., Zhang, G.: Application of Constacyclic codes to quantum MDS codes. IEEE Trans. Inform. Theory 61, 1474–1478 (2014)MathSciNetMATH Chen, B., Ling, S., Zhang, G.: Application of Constacyclic codes to quantum MDS codes. IEEE Trans. Inform. Theory 61, 1474–1478 (2014)MathSciNetMATH
13.
go back to reference Chen, B., Dinh, H.Q., Liu, H.: Repeated-root constacyclic codes of length \(\ell p^s\) and their duals. Discrete Appl. Math. 177, 60–70 (2014)MathSciNetMATH Chen, B., Dinh, H.Q., Liu, H.: Repeated-root constacyclic codes of length \(\ell p^s\) and their duals. Discrete Appl. Math. 177, 60–70 (2014)MathSciNetMATH
14.
go back to reference Cleve, R., Gottesman, D.: Efficient computations of encodings for quantum error correction. Phys. Rev. A 56, 76 (1997) Cleve, R., Gottesman, D.: Efficient computations of encodings for quantum error correction. Phys. Rev. A 56, 76 (1997)
15.
go back to reference Denes, J., Keedwell, A.D.: Latin squares and their applications. Academic Press, New York (1974)MATH Denes, J., Keedwell, A.D.: Latin squares and their applications. Academic Press, New York (1974)MATH
16.
go back to reference Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc Royal Soc of London A 400, 97–117 (1985)MathSciNetMATH Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc Royal Soc of London A 400, 97–117 (1985)MathSciNetMATH
17.
go back to reference Dinh, H.Q.: “Constacyclic codes of length \(p^s\) over \(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}^{\prime \prime }\). J. Algebra 324, 940–950 (2010)MathSciNet Dinh, H.Q.: “Constacyclic codes of length \(p^s\) over \(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}^{\prime \prime }\). J. Algebra 324, 940–950 (2010)MathSciNet
18.
go back to reference Dinh, H.Q.: Repeated-root constacyclic codes of length \(2p^s\). Finite Fields Appl. 18, 133–143 (2012)MathSciNetMATH Dinh, H.Q.: Repeated-root constacyclic codes of length \(2p^s\). Finite Fields Appl. 18, 133–143 (2012)MathSciNetMATH
19.
go back to reference Dinh, H.Q.: Structure of repeated-root constacyclic codes of length \(3p^s\) and their duals. Discrete Math. 313, 983–991 (2013)MathSciNetMATH Dinh, H.Q.: Structure of repeated-root constacyclic codes of length \(3p^s\) and their duals. Discrete Math. 313, 983–991 (2013)MathSciNetMATH
20.
go back to reference Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S.: Constacyclic codes over finite commutative semi-simple rings. Finite Fields Appl. 45, 1–18 (2017)MathSciNetMATH Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S.: Constacyclic codes over finite commutative semi-simple rings. Finite Fields Appl. 45, 1–18 (2017)MathSciNetMATH
21.
go back to reference Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S.: Negacyclic codes of length \(4p^s\) over \(\mathbb{F} _{p^m} + u\mathbb{F} _{p^m}\). Discrete Math. 341, 1055–1071 (2018)MathSciNet Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S.: Negacyclic codes of length \(4p^s\) over \(\mathbb{F} _{p^m} + u\mathbb{F} _{p^m}\). Discrete Math. 341, 1055–1071 (2018)MathSciNet
22.
go back to reference Dinh, H.Q., Dhompongsa, S., Sriboonchitta, S.: On constacyclic codes of length \(4p^s\) over \(\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}\). Discrete Math. 340, 832–849 (2017)MathSciNetMATH Dinh, H.Q., Dhompongsa, S., Sriboonchitta, S.: On constacyclic codes of length \(4p^s\) over \(\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}\). Discrete Math. 340, 832–849 (2017)MathSciNetMATH
23.
go back to reference Dinh, H.Q., Nguyen, H.D.T., Sriboonchitta, S., Vo, T.M.: Repeated-root constacyclic codes of prime power lengths over finite chain rings. Finite Fields Appl. 43, 22–41 (2017)MathSciNetMATH Dinh, H.Q., Nguyen, H.D.T., Sriboonchitta, S., Vo, T.M.: Repeated-root constacyclic codes of prime power lengths over finite chain rings. Finite Fields Appl. 43, 22–41 (2017)MathSciNetMATH
24.
go back to reference Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S., Vo, T.M.: On a class of constacyclic codes of length \(4p^s\) over \(\mathbb{F} _{p^m} + u\mathbb{F} _{p^m}\). J. Algebra Appl. 18, 1950022 (2019)MathSciNet Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S., Vo, T.M.: On a class of constacyclic codes of length \(4p^s\) over \(\mathbb{F} _{p^m} + u\mathbb{F} _{p^m}\). J. Algebra Appl. 18, 1950022 (2019)MathSciNet
25.
go back to reference Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S., Vo, T.M.: On \((\alpha + u\beta )\)-constacyclic codes of length \(4p^s\) over \(\mathbb{F} _{p^m} + u\mathbb{F} _{p^m}\). J. Algebra Appl. 18, 1950023 (2019)MathSciNet Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S., Vo, T.M.: On \((\alpha + u\beta )\)-constacyclic codes of length \(4p^s\) over \(\mathbb{F} _{p^m} + u\mathbb{F} _{p^m}\). J. Algebra Appl. 18, 1950023 (2019)MathSciNet
26.
go back to reference Dinh, H.Q., Nguyen, B.T., Yamaka, W.: Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length \(2p^s\) over \(\mathbb{F} _{p^m}\). IEEE Access 8, 124608–124623 (2020) Dinh, H.Q., Nguyen, B.T., Yamaka, W.: Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length \(2p^s\) over \(\mathbb{F} _{p^m}\). IEEE Access 8, 124608–124623 (2020)
28.
go back to reference Dinh, H.Q., Wang, X., Jirakom, S.: On the Hamming distance of constacyclic codes of length \(5p^s\). IEEE Access 8, 44642–46254 (2020) Dinh, H.Q., Wang, X., Jirakom, S.: On the Hamming distance of constacyclic codes of length \(5p^s\). IEEE Access 8, 44642–46254 (2020)
29.
go back to reference Dinh, H.Q., Nguyen, Bac T., Yamaka, W.: “Constacyclic Codes of Length \(3p^s\) Over \(\mathbb{F} _{p^m}+u\mathbb{F} _{p^m}\) and their application in various distance distributions”, IEEE Access, 8, (2020), pp. 204031-204056 Dinh, H.Q., Nguyen, Bac T., Yamaka, W.: “Constacyclic Codes of Length \(3p^s\) Over \(\mathbb{F} _{p^m}+u\mathbb{F} _{p^m}\) and their application in various distance distributions”, IEEE Access, 8, (2020), pp. 204031-204056
30.
go back to reference El-Khamy, M., McEliece,R.J.: “The partition weight enumerator of MDS codes and its applications,” In Proc. Int. Symp. Inf. Theory ISIT, pp. 926-930, 2005 El-Khamy, M., McEliece,R.J.: “The partition weight enumerator of MDS codes and its applications,” In Proc. Int. Symp. Inf. Theory ISIT, pp. 926-930, 2005
31.
go back to reference Ezerman, M.F., Jitman, S., Kiah, M., Ling, S.: Pure asymmetric quantum MDS codes from CSS construction: A complete characterization. Int. J. Quantum Inform. 11, 1350027 (2013)MathSciNetMATH Ezerman, M.F., Jitman, S., Kiah, M., Ling, S.: Pure asymmetric quantum MDS codes from CSS construction: A complete characterization. Int. J. Quantum Inform. 11, 1350027 (2013)MathSciNetMATH
32.
go back to reference Ezerman, M.F., Jitman, S., Ling, S., Pasechnik, D.V.: CSS-like constructions of asymmetric quantum codes. IEEE Trans. Inf. Theory 59, 6732–6754 (2013)MathSciNetMATH Ezerman, M.F., Jitman, S., Ling, S., Pasechnik, D.V.: CSS-like constructions of asymmetric quantum codes. IEEE Trans. Inf. Theory 59, 6732–6754 (2013)MathSciNetMATH
33.
go back to reference Ezerman, M.F., Ling, S., Sole, P.: Additive asymmetric quantum codes. IEEE Trans. Inf. Theory 57, 5536–5550 (2011)MathSciNetMATH Ezerman, M.F., Ling, S., Sole, P.: Additive asymmetric quantum codes. IEEE Trans. Inf. Theory 57, 5536–5550 (2011)MathSciNetMATH
34.
35.
go back to reference Fujiwara, Y.: Block synchronization for quantum information. Phys. Rev. A 87, 109–120 (2013) Fujiwara, Y.: Block synchronization for quantum information. Phys. Rev. A 87, 109–120 (2013)
36.
go back to reference Fujiwara, Y., Tonchev, D.: High-rate self-synchronizing codes. IEEE Trans. Inf. Theory 59, 2328–2335 (2013)MathSciNetMATH Fujiwara, Y., Tonchev, D.: High-rate self-synchronizing codes. IEEE Trans. Inf. Theory 59, 2328–2335 (2013)MathSciNetMATH
37.
go back to reference Fujiwara, Y., Tonchev, D., Wong, H.: Algebraic techniques in designing quantum synchronizable codes. Phys. Rev. A 88, 162–166 (2013) Fujiwara, Y., Tonchev, D., Wong, H.: Algebraic techniques in designing quantum synchronizable codes. Phys. Rev. A 88, 162–166 (2013)
38.
go back to reference Fujiwara, Y., Vandendriessche, P.: Quantum synchronizable codes from finite geometries. IEEE Trans. Inf. Theory 60, 7345–7354 (2014)MathSciNetMATH Fujiwara, Y., Vandendriessche, P.: Quantum synchronizable codes from finite geometries. IEEE Trans. Inf. Theory 60, 7345–7354 (2014)MathSciNetMATH
39.
go back to reference Grassl, M., Beth, T., Rȯtteler, M.: On optimal quantum codes. Int. J. Quantum Inform 2, 757–766 (2004)MATH Grassl, M., Beth, T., Rȯtteler, M.: On optimal quantum codes. Int. J. Quantum Inform 2, 757–766 (2004)MATH
40.
go back to reference Grassl, M., Klappenecker, A., Rotteler, M., “Graphs, Quadratic Forms, and Quantum Codes,” Proceedings 2002 IEEE International Symposium on Information Theory, pp. 45, 2002 Grassl, M., Klappenecker, A., Rotteler, M., “Graphs, Quadratic Forms, and Quantum Codes,” Proceedings 2002 IEEE International Symposium on Information Theory, pp. 45, 2002
41.
go back to reference Grassl, M., Beth, T., Geiselmann, W.: Quantum Reed-Solomon Codes, AAECC-13. Honolulu, HI, USA (1999)MATH Grassl, M., Beth, T., Geiselmann, W.: Quantum Reed-Solomon Codes, AAECC-13. Honolulu, HI, USA (1999)MATH
42.
go back to reference Grassl, M., Beth, T.: Quantum BCH codes, pp. 207–212. Magdeburg, In Proc. X. Intl. Symp. Theoretical Electrical Engineering (1999) Grassl, M., Beth, T.: Quantum BCH codes, pp. 207–212. Magdeburg, In Proc. X. Intl. Symp. Theoretical Electrical Engineering (1999)
43.
go back to reference Grassl,M.: Bounds on the minimum distance of linear codes and quantum codes, available online at http://www.codetables.de, Accessed 2021-04-19 Grassl,M.: Bounds on the minimum distance of linear codes and quantum codes, available online at http://​www.​codetables.​de, Accessed 2021-04-19
44.
go back to reference Gottesman, D.: PhD Thesis (Caltech). quantph/9705052, 1997 Gottesman, D.: PhD Thesis (Caltech). quantph/9705052, 1997
45.
go back to reference Golomb, S.W., Posner, E.C.: Rook domains, Latin squares, affine planes, and error-distributing codes. IEEE Trans. Information Theory 10, 196–208 (1964)MathSciNetMATH Golomb, S.W., Posner, E.C.: Rook domains, Latin squares, affine planes, and error-distributing codes. IEEE Trans. Information Theory 10, 196–208 (1964)MathSciNetMATH
46.
go back to reference Guardia,G. G. L.: “Constructions of new families of nonbinary quantum codes,” Phys. Rev. A, Vol 80, pp. 042331-1-042331-11, 2009 Guardia,G. G. L.: “Constructions of new families of nonbinary quantum codes,” Phys. Rev. A, Vol 80, pp. 042331-1-042331-11, 2009
47.
go back to reference Guardia, G.G.L.: Asymmetric quantum reed-solomon and generalized reed-solomon codes. Quantum Inf. Process. 11, 591–604 (2012)MathSciNetMATH Guardia, G.G.L.: Asymmetric quantum reed-solomon and generalized reed-solomon codes. Quantum Inf. Process. 11, 591–604 (2012)MathSciNetMATH
48.
go back to reference Guardia, G. G. L.:“Asymmetric quantum codes: New codes from old,”Quantum Inf Process, Vol. 12, pp. 2771-2790, 2013 Guardia, G. G. L.:“Asymmetric quantum codes: New codes from old,”Quantum Inf Process, Vol. 12, pp. 2771-2790, 2013
49.
go back to reference Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Crypt. 86, 121–136 (2018)MathSciNetMATH Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Crypt. 86, 121–136 (2018)MathSciNetMATH
50.
go back to reference Hu, D., Tang, W., Zhao, M., Chen, Q., Yu, S., Oh, C.: Graphical nonbinary quantum error-correcting codes. Phys. Rev. A 78, 1–11 (2008) Hu, D., Tang, W., Zhao, M., Chen, Q., Yu, S., Oh, C.: Graphical nonbinary quantum error-correcting codes. Phys. Rev. A 78, 1–11 (2008)
51.
go back to reference Ioffe, L., Mezard, M.: “Asymmetric quantum error-correcting codes”, Phys. Rev. A, Vol 75, 032345, 2007 Ioffe, L., Mezard, M.: “Asymmetric quantum error-correcting codes”, Phys. Rev. A, Vol 75, 032345, 2007
52.
53.
go back to reference Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 84, 463–471 (2017)MathSciNetMATH Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 84, 463–471 (2017)MathSciNetMATH
54.
go back to reference Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56, 4735–4740 (2010)MathSciNetMATH Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56, 4735–4740 (2010)MathSciNetMATH
55.
go back to reference Jin, L., Xing, C.: A construction of new quantum mds codes. IEEE Trans. Inform. Theory 60, 2921–2925 (2014)MathSciNetMATH Jin, L., Xing, C.: A construction of new quantum mds codes. IEEE Trans. Inform. Theory 60, 2921–2925 (2014)MathSciNetMATH
56.
go back to reference Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inform. Theory 2, 1193–1197 (2013)MathSciNetMATH Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inform. Theory 2, 1193–1197 (2013)MathSciNetMATH
57.
go back to reference Kai, X., Zhu, S., Li, P.: A construction of new MDS symbol-pair codes. IEEE Trans. Inf. Theory 11, 5828–5834 (2015)MathSciNetMATH Kai, X., Zhu, S., Li, P.: A construction of new MDS symbol-pair codes. IEEE Trans. Inf. Theory 11, 5828–5834 (2015)MathSciNetMATH
58.
go back to reference Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997)MathSciNet Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997)MathSciNet
59.
go back to reference Knill, E., Laflamme, R.: A theory of quantum error-correcting codes. Phys. Rev. Lett. 84, 2525 (2000)MathSciNetMATH Knill, E., Laflamme, R.: A theory of quantum error-correcting codes. Phys. Rev. Lett. 84, 2525 (2000)MathSciNetMATH
60.
go back to reference Komamiya,Y.: “Application of logical mathematics to information theory,” (Application of theory of groups to logical mathematics.). In Proceedings of the Third Japan National Congress for Applied Mechanics, 1953, pages 437-442, Tokyo, 1954. Science Council of Japan Komamiya,Y.: “Application of logical mathematics to information theory,” (Application of theory of groups to logical mathematics.). In Proceedings of the Third Japan National Congress for Applied Mechanics, 1953, pages 437-442, Tokyo, 1954. Science Council of Japan
61.
go back to reference Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon Pairs. Phys. Rev. Lett. 75, 4337 (1995) Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon Pairs. Phys. Rev. Lett. 75, 4337 (1995)
62.
go back to reference Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198 (1996) Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198 (1996)
63.
go back to reference Li, Z., Xing, L.J., Wang, X.M.: Quantum generalized Reed-Solomon codes: unified framework for quantum maximum-distanceseparable codes. Phys. Rev. A 77, 1–4 (2008) Li, Z., Xing, L.J., Wang, X.M.: Quantum generalized Reed-Solomon codes: unified framework for quantum maximum-distanceseparable codes. Phys. Rev. A 77, 1–4 (2008)
64.
go back to reference Liu, X., Liu, H., Yu, L.: Entanglement-assisted quantum codes from matrix-product codes. Quantum Inf. Process. 18, 183 (2019)MathSciNetMATH Liu, X., Liu, H., Yu, L.: Entanglement-assisted quantum codes from matrix-product codes. Quantum Inf. Process. 18, 183 (2019)MathSciNetMATH
65.
go back to reference Liu, X., Yu, L., Hu, P.: New entanglement-assisted quantum codes from k-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019)MathSciNetMATH Liu, X., Yu, L., Hu, P.: New entanglement-assisted quantum codes from k-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019)MathSciNetMATH
66.
go back to reference Lidar, A., Brun, A.: Quantum Error Correction. Cambridge University Press, Cambridge, U.K. (2013) Lidar, A., Brun, A.: Quantum Error Correction. Cambridge University Press, Cambridge, U.K. (2013)
67.
go back to reference Lopez-Permouth, S.R., Ozadam, H., Ozbudak, F., Szabo, S.: Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes. Finite Fields Appl. 19, 16–38 (2013)MathSciNetMATH Lopez-Permouth, S.R., Ozadam, H., Ozbudak, F., Szabo, S.: Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes. Finite Fields Appl. 19, 16–38 (2013)MathSciNetMATH
68.
go back to reference Luo, L., Ma, Z.: Non-binary quantum synchronizable codes from repeated-root cyclic codes. IEEE Trans. Inform. Theory 14, 1–10 (2015)MATH Luo, L., Ma, Z.: Non-binary quantum synchronizable codes from repeated-root cyclic codes. IEEE Trans. Inform. Theory 14, 1–10 (2015)MATH
69.
go back to reference Luo, L., Ma, Z., Lin, D.: Two new families of quantum synchronizable codes. Quantum Inf. Process. 18, 1–18 (2019)MathSciNetMATH Luo, L., Ma, Z., Lin, D.: Two new families of quantum synchronizable codes. Quantum Inf. Process. 18, 1–18 (2019)MathSciNetMATH
70.
71.
go back to reference MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting Codes, \(10^{th}\) impression. North-Holland, Amsterdam (1998) MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting Codes, \(10^{th}\) impression. North-Holland, Amsterdam (1998)
72.
go back to reference Maneri, C., Silverman, R.: A combinatorial problem with applications to geometry. J. Combinatorial Theory Ser. A 11, 118–121 (1966)MathSciNetMATH Maneri, C., Silverman, R.: A combinatorial problem with applications to geometry. J. Combinatorial Theory Ser. A 11, 118–121 (1966)MathSciNetMATH
73.
go back to reference Massey, J.L., Costello, D.J., Justesen, J.: Polynomial weights and code constructions. IEEE Trans. Information Theory 19, 101–110 (1973)MathSciNetMATH Massey, J.L., Costello, D.J., Justesen, J.: Polynomial weights and code constructions. IEEE Trans. Information Theory 19, 101–110 (1973)MathSciNetMATH
74.
go back to reference Matthews, J.F., Politi, A., Stefanov, A., O’Brien, J.L.: Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346–350 (2009) Matthews, J.F., Politi, A., Stefanov, A., O’Brien, J.L.: Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346–350 (2009)
75.
go back to reference Nielsen, A., Chuang, L:. Quantum computation and quantum information. Cambridge University Press, 2010 Nielsen, A., Chuang, L:. Quantum computation and quantum information. Cambridge University Press, 2010
76.
go back to reference Ozadam, H., Ozbudak, F.: The minimum Hamming distance of cyclic codes of length \(2p^s\), International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes (2009), 92-100 Ozadam, H., Ozbudak, F.: The minimum Hamming distance of cyclic codes of length \(2p^s\), International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes (2009), 92-100
77.
go back to reference Pless, V., Huffman, W.C.: Handbook of Coding Theory. Elsevier, Amsterdam (1998)MATH Pless, V., Huffman, W.C.: Handbook of Coding Theory. Elsevier, Amsterdam (1998)MATH
78.
go back to reference Prange, E.: Cyclic error-correcting codes in two symbols, (September 1957), TN-57-103 Prange, E.: Cyclic error-correcting codes in two symbols, (September 1957), TN-57-103
79.
go back to reference Polyanskiy, Y.: Asynchronous communication: Exact synchronization, universality, and dispersion. IEEE Trans. Inf. Theory 59, 1256–1270 (2013)MathSciNetMATH Polyanskiy, Y.: Asynchronous communication: Exact synchronization, universality, and dispersion. IEEE Trans. Inf. Theory 59, 1256–1270 (2013)MathSciNetMATH
80.
go back to reference Prevedel, R., Cronenberg, G., Tame, M.S., Paternostro, M., Walther, P., Kim, M.S., Zeilinger, A.: Experimental realization of dicke states of up to six qubits for multiparty quantum networking. Phys. Rev. Lett. 103, 020503 (2009) Prevedel, R., Cronenberg, G., Tame, M.S., Paternostro, M., Walther, P., Kim, M.S., Zeilinger, A.: Experimental realization of dicke states of up to six qubits for multiparty quantum networking. Phys. Rev. Lett. 103, 020503 (2009)
81.
go back to reference Radmark, M., Zukowski, M., Bourennane, M.: Experimental test of fidelity limits in six-photon interferometry and of rotational invariance properties of the photonic six-qubit entanglement singlet state. Phys. Rev. Lett. 103, 150501 (2009) Radmark, M., Zukowski, M., Bourennane, M.: Experimental test of fidelity limits in six-photon interferometry and of rotational invariance properties of the photonic six-qubit entanglement singlet state. Phys. Rev. Lett. 103, 150501 (2009)
82.
go back to reference Rains, E.M.:“Quantum weight Enumerators,” IEEE Trans. Inform. Theory, Vol 4, pp. 1388-1394, 1998 Rains, E.M.:“Quantum weight Enumerators,” IEEE Trans. Inform. Theory, Vol 4, pp. 1388-1394, 1998
83.
go back to reference Roth, R.M., Seroussi, G.: On cyclic MDS codes of length \(q\) over GF\((q)\). IEEE Trans. Inform. Theory 32, 284–285 (1986)MathSciNetMATH Roth, R.M., Seroussi, G.: On cyclic MDS codes of length \(q\) over GF\((q)\). IEEE Trans. Inform. Theory 32, 284–285 (1986)MathSciNetMATH
84.
go back to reference Roman, S.: Coding and information theory, GTM, 134, Springer-Verlag, ISBN 0-387-97812-7, 1992 Roman, S.: Coding and information theory, GTM, 134, Springer-Verlag, ISBN 0-387-97812-7, 1992
85.
go back to reference Sar, M., Kolotoğlu, E.: A different construction for some classes of quantum MDS codes. Math. Comput. Sci. 14, 35–44 (2020)MathSciNetMATH Sar, M., Kolotoğlu, E.: A different construction for some classes of quantum MDS codes. Math. Comput. Sci. 14, 35–44 (2020)MathSciNetMATH
86.
go back to reference Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001) Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001)
87.
go back to reference Schlingemann, D.: Stabilizer codes can be realized as graph codes. Quantum Inf. Comput. 2, 307–323 (2002)MathSciNetMATH Schlingemann, D.: Stabilizer codes can be realized as graph codes. Quantum Inf. Comput. 2, 307–323 (2002)MathSciNetMATH
88.
go back to reference Sklar, B.: Digital communications: fundamentals and applications, 2nd edn. Prentice Hall, Upper Saddle River, NJ (2001)MATH Sklar, B.: Digital communications: fundamentals and applications, 2nd edn. Prentice Hall, Upper Saddle River, NJ (2001)MATH
89.
go back to reference Silverman, R.: A metrization for power-sets with applications to combinatorial analysis. Canad. J. Math. 12, 158–176 (1960)MathSciNetMATH Silverman, R.: A metrization for power-sets with applications to combinatorial analysis. Canad. J. Math. 12, 158–176 (1960)MathSciNetMATH
90.
go back to reference Shi, X., Yue, Q., Chang, Y.: Some quantum MDS codes with large minimum distance from generalized Reed-Solomon codes. Cryptogr. Commun. 10, 1165–1182 (2018)MathSciNetMATH Shi, X., Yue, Q., Chang, Y.: Some quantum MDS codes with large minimum distance from generalized Reed-Solomon codes. Cryptogr. Commun. 10, 1165–1182 (2018)MathSciNetMATH
91.
go back to reference Shi, X., Yue, Q., Wu, Y.: New quantum MDS codes with large minimum distance and short length from generalized Reed-Solomon codes. Discrete Math. 342, 1989–2001 (2019)MathSciNetMATH Shi, X., Yue, Q., Wu, Y.: New quantum MDS codes with large minimum distance and short length from generalized Reed-Solomon codes. Discrete Math. 342, 1989–2001 (2019)MathSciNetMATH
92.
go back to reference Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493 (1995) Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493 (1995)
93.
go back to reference Silverman, J. H.: A friendly introduction to number theory, Brown University, 2011 Silverman, J. H.: A friendly introduction to number theory, Brown University, 2011
94.
95.
go back to reference Steane, A.M.: Enlargement of Calderbank-Shor-Steane quantum codes. IEEE Trans. Inf. Theory 45, 2492–2495 (1999)MathSciNetMATH Steane, A.M.: Enlargement of Calderbank-Shor-Steane quantum codes. IEEE Trans. Inf. Theory 45, 2492–2495 (1999)MathSciNetMATH
96.
go back to reference Tolhuizen, G.M.: On Maximum distance separable codes over alphabets of arbitrary size. In Proc. Int. Symp. Inf. Theory ISIT, page 431, 1994 Tolhuizen, G.M.: On Maximum distance separable codes over alphabets of arbitrary size. In Proc. Int. Symp. Inf. Theory ISIT, page 431, 1994
97.
go back to reference Wieczorek, W., Krischek, R., Kiesel, N., Michelberger, P., Tóth, G.: and Harald Weinfurter, Experimental Entanglement of a Six-Photon Symmetric Dicke State. Phys. Rev. Lett. 103, 020504 (2009) Wieczorek, W., Krischek, R., Kiesel, N., Michelberger, P., Tóth, G.: and Harald Weinfurter, Experimental Entanglement of a Six-Photon Symmetric Dicke State. Phys. Rev. Lett. 103, 020504 (2009)
98.
go back to reference Wang, J., Li, R., Lv, J., Song, H.: Entanglement-assisted quantum codes from cyclic codes and negacyclic codes. Quantum Inf. Process. 5, 138 (2020)MathSciNetMATH Wang, J., Li, R., Lv, J., Song, H.: Entanglement-assisted quantum codes from cyclic codes and negacyclic codes. Quantum Inf. Process. 5, 138 (2020)MathSciNetMATH
99.
go back to reference Wang, L., Zhu, S., Sun, Z.: Entanglement-assisted quantum MDS codes from cyclic codes. Quantum Inf. Process. 19, 65 (2020)MathSciNetMATH Wang, L., Zhu, S., Sun, Z.: Entanglement-assisted quantum MDS codes from cyclic codes. Quantum Inf. Process. 19, 65 (2020)MathSciNetMATH
100.
101.
go back to reference Xie, Y., Yuan, J., Fujiwara, Y.: Quantum synchronizable codes from augmentation of cyclic codes. PLoS ONE 6, e14641 (2014) Xie, Y., Yuan, J., Fujiwara, Y.: Quantum synchronizable codes from augmentation of cyclic codes. PLoS ONE 6, e14641 (2014)
102.
go back to reference Xie, Y., Yang, L., Yuan, J.: q-ary chain-containing quantum synchronizable codes. IEEE Commun. Lett. 20, 414–417 (2016) Xie, Y., Yang, L., Yuan, J.: q-ary chain-containing quantum synchronizable codes. IEEE Commun. Lett. 20, 414–417 (2016)
103.
104.
go back to reference Yao, X.C., Wang, T.X., Xu, P., Lu, H., Pan, G. S., Bao, X. H., Peng, C.Z., Lu, C.Y., Chen, Y.A., Pan, J.W.:“Observation of eight-photon entanglement”, Nat. Photonics, Vol 6, pp. 225-228, 2012 Yao, X.C., Wang, T.X., Xu, P., Lu, H., Pan, G. S., Bao, X. H., Peng, C.Z., Lu, C.Y., Chen, Y.A., Pan, J.W.:“Observation of eight-photon entanglement”, Nat. Photonics, Vol 6, pp. 225-228, 2012
105.
go back to reference Zhang, T., Ge, G.: Quantum MDS codes with large minimum distance. Des. Codes Cryptogr. 83, 503–517 (2017)MathSciNetMATH Zhang, T., Ge, G.: Quantum MDS codes with large minimum distance. Des. Codes Cryptogr. 83, 503–517 (2017)MathSciNetMATH
106.
go back to reference Zhou, X., Song, L., Zhang, Y.: Physical layer security in wireless communications. CRC Press, Inc., Boca Raton, FL, USA (2013) Zhou, X., Song, L., Zhang, Y.: Physical layer security in wireless communications. CRC Press, Inc., Boca Raton, FL, USA (2013)
Metadata
Title
Quantum MDS and synchronizable codes from cyclic codes of length over
Authors
Hai Q. Dinh
Bac T. Nguyen
Roengchai Tansuchat
Publication date
20-10-2021
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing / Issue 6/2023
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-021-00531-6

Premium Partner