Skip to main content
Top
Published in: Wireless Personal Communications 4/2020

29-04-2020

Quantum Secure Primary Communication Based on Quantum Information Compression

Authors: Hongyang Ma, Xin Zhang, Pengao Xu, Fen Liu

Published in: Wireless Personal Communications | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The need for information compression has become critical , particularly in quantum secure communication. It is presented a quantum secure primary communication with information compression. Quantum information can be divided into effective information and channel detection information improve transmission efficiency. The sending node will transmit effective information compressed in advance and channel detection information which are preprocessing by single photon to the receiving node. Meanwhile, the sending node will disclose the relevant content of channel detection information and check the security of quantum channel. If the channel is safe, the sending node will transmit the effective information decoding content to the receiving node. In process, the initial length of quantum information and the corresponding complexity of information as criteria of transmission efficiency, calculate and select the requirement compressed information to improve the transmission efficiency as far as possible. Then, it developed the simulated with MATLAB to calculate the relationship between transmission speed and compression length. In addition, it analyzes the security of communication protocol. The protocol has practical significance in improving the transmission speed from two aspects which are improving the transmission efficiency of quantum information and completing the whole communication process in one step.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Teng, J. K., & Ma, H. Y. (2020). Dynamic asymmetric group key agreement protocol with traitor traceability. IET Information Security, 13(6), 703–710. Teng, J. K., & Ma, H. Y. (2020). Dynamic asymmetric group key agreement protocol with traitor traceability. IET Information Security, 13(6), 703–710.
2.
go back to reference Ma, H. Y., Xu, P. A., Shao, C. H., et al. (2019). Quantum private query based on stable error correcting code in the case of noise. International Journal of Theoretical Physics, 58(12), 4241–4248.MathSciNetMATH Ma, H. Y., Xu, P. A., Shao, C. H., et al. (2019). Quantum private query based on stable error correcting code in the case of noise. International Journal of Theoretical Physics, 58(12), 4241–4248.MathSciNetMATH
3.
go back to reference Huang, B. H., Chen, Y. H., Wu, Q. C., et al. (2016). Fast generating Greenberger—Horne–Zeilinger state via iterative interaction pictures. Laser Physics Letters, 13(10), 105202. Huang, B. H., Chen, Y. H., Wu, Q. C., et al. (2016). Fast generating Greenberger—Horne–Zeilinger state via iterative interaction pictures. Laser Physics Letters, 13(10), 105202.
4.
go back to reference Peng, Y., Shao, P. N., Li, X., Bai, J. F., & Meng, K. J. (2020). Lattice based verifiable secret sharing scheme. Computer System Application, 29(01), 225–230. Peng, Y., Shao, P. N., Li, X., Bai, J. F., & Meng, K. J. (2020). Lattice based verifiable secret sharing scheme. Computer System Application, 29(01), 225–230.
5.
go back to reference Bose, S. (2003). Quantum communication through an unmodulated spin chain. Physical Review Letters, 91(20), 207901. Bose, S. (2003). Quantum communication through an unmodulated spin chain. Physical Review Letters, 91(20), 207901.
6.
go back to reference Wang, Y., & Su, Q. (2020). Continuous variable measurement equipment independent cluster state quantum communication based on coherent state light field. Acta Electronica Sinica, 42(2), 307–314. Wang, Y., & Su, Q. (2020). Continuous variable measurement equipment independent cluster state quantum communication based on coherent state light field. Acta Electronica Sinica, 42(2), 307–314.
7.
go back to reference Yi, X. X., Jin, G. R., & Zhou, D. L. (2001). Creating Bell states and decoherence effects in a quantum-dot system. Physical Review A, 63(6), 151–159. Yi, X. X., Jin, G. R., & Zhou, D. L. (2001). Creating Bell states and decoherence effects in a quantum-dot system. Physical Review A, 63(6), 151–159.
8.
go back to reference Liang, Y., Su, S. L., Wu, Q. C., et al. (2015). Adiabatic passage for three-dimensional entanglement generation through quantum Zeno dynamics. Optics Express, 23(4), 5064–5077. Liang, Y., Su, S. L., Wu, Q. C., et al. (2015). Adiabatic passage for three-dimensional entanglement generation through quantum Zeno dynamics. Optics Express, 23(4), 5064–5077.
9.
go back to reference Steinlechner, F., Ecker, S., Fink, M., et al. (2017). Distribution of high-dimensional entanglement via an intra-city free-space link. Nature Communication, 8, 15971. Steinlechner, F., Ecker, S., Fink, M., et al. (2017). Distribution of high-dimensional entanglement via an intra-city free-space link. Nature Communication, 8, 15971.
11.
go back to reference Shi, P., Li, N. C., Wang, S. M., Liu, Z., Ren, M. R., & MaMa, H. Y. (2019). Quantum Multi-User Broadcast Protocol for the “Platform as a Service” Model[J]. Sensors, 19(23), 5257. Shi, P., Li, N. C., Wang, S. M., Liu, Z., Ren, M. R., & MaMa, H. Y. (2019). Quantum Multi-User Broadcast Protocol for the “Platform as a Service” Model[J]. Sensors, 19(23), 5257.
12.
go back to reference Wei, C. Y., Cai, X. Q., Wang, T. Y., et al. (2020). Quantum anonymous authentication key exchange protocol based on quantum casual key transmission. Acta Electronica Sinica, 42(2), 341–347. Wei, C. Y., Cai, X. Q., Wang, T. Y., et al. (2020). Quantum anonymous authentication key exchange protocol based on quantum casual key transmission. Acta Electronica Sinica, 42(2), 341–347.
13.
go back to reference Zheng, S. B. (2009). Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities. Applied Physics Letters, 94(15), 116. Zheng, S. B. (2009). Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities. Applied Physics Letters, 94(15), 116.
14.
go back to reference Chen, Y. H., Xia, Y., Chen, Q. Q., et al. (2015). Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Physical Review A, 91(1), 012325. Chen, Y. H., Xia, Y., Chen, Q. Q., et al. (2015). Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Physical Review A, 91(1), 012325.
15.
go back to reference Long, G. L., & Liu, X. S. (2002). Theoretically efficient high-capacity quantum-key-distribution scheme. Physical Review A, 65, 032302. Long, G. L., & Liu, X. S. (2002). Theoretically efficient high-capacity quantum-key-distribution scheme. Physical Review A, 65, 032302.
16.
go back to reference Gertner, Y., Ishai, Y., Kushilevitz, E., et al. (2000). Protecting data privacy in private information retrieval schemes. Journal of Computer System Sciences, 60(3), 592–629.MathSciNetMATH Gertner, Y., Ishai, Y., Kushilevitz, E., et al. (2000). Protecting data privacy in private information retrieval schemes. Journal of Computer System Sciences, 60(3), 592–629.MathSciNetMATH
17.
go back to reference Deng, F. G., & Long, G. L. (2004). Secure direct communication with a quantum one-time pad. Physics, 69(5), 521–524. Deng, F. G., & Long, G. L. (2004). Secure direct communication with a quantum one-time pad. Physics, 69(5), 521–524.
18.
go back to reference Wang, C., Deng, F. G., Li, Y. S., et al. (2005). Quantum secure direct communication with high-dimension quantum superdense coding. Physical Review A, 71(4), 044305. Wang, C., Deng, F. G., Li, Y. S., et al. (2005). Quantum secure direct communication with high-dimension quantum superdense coding. Physical Review A, 71(4), 044305.
19.
go back to reference Lucamarini, M., & Mancini, S. (2005). Secure deterministic communication without entanglement. Physical Review Letters, 94(14), 140501. Lucamarini, M., & Mancini, S. (2005). Secure deterministic communication without entanglement. Physical Review Letters, 94(14), 140501.
20.
go back to reference Lee, H., Lim, J., & Yang, H. J. (2006). Quantum direct communication with authentication. Physical Review A, 73(4), 042305. Lee, H., Lim, J., & Yang, H. J. (2006). Quantum direct communication with authentication. Physical Review A, 73(4), 042305.
21.
go back to reference Lucamarini, M., Ceré, A., Giuseppe, G. D., et al. (2007). Two-way protocol with imperfect devices. Open Systems Information Dynamics, 14(02), 169–178.MathSciNet Lucamarini, M., Ceré, A., Giuseppe, G. D., et al. (2007). Two-way protocol with imperfect devices. Open Systems Information Dynamics, 14(02), 169–178.MathSciNet
22.
go back to reference Hu, J. Y., Yu, B., Jing, M. Y., et al. (2006). Experimental quantum secure direct communication with single photons. Light Science Applications, 5(9), e16144. Hu, J. Y., Yu, B., Jing, M. Y., et al. (2006). Experimental quantum secure direct communication with single photons. Light Science Applications, 5(9), e16144.
23.
go back to reference Ma, H. Y., Qin, G. Q., Fan, X. K., et al. (2015). Quantum network direct communication protocol over noisy channel. Acta Physica Sinica, 64(16), 36–42. Ma, H. Y., Qin, G. Q., Fan, X. K., et al. (2015). Quantum network direct communication protocol over noisy channel. Acta Physica Sinica, 64(16), 36–42.
24.
go back to reference Zhou, L., Sheng, Y. B., & Long, G. L. (2020). Device-independent quantum secure direct communication against collective attacks. Science Bulletin, 65(01), 12–20. Zhou, L., Sheng, Y. B., & Long, G. L. (2020). Device-independent quantum secure direct communication against collective attacks. Science Bulletin, 65(01), 12–20.
25.
go back to reference Zhou, N. R., Zhu, K. N., & Zou, X. F. (2019). Multi-party semi-quantum key distribution protocol with four-particle cluster states. Annalen der Physik, 531(8), 1800520.MathSciNet Zhou, N. R., Zhu, K. N., & Zou, X. F. (2019). Multi-party semi-quantum key distribution protocol with four-particle cluster states. Annalen der Physik, 531(8), 1800520.MathSciNet
26.
go back to reference Yan, X. Y., Zhou, N. R., Gong, L. H., Wang, Y. Q., & Wen, X. J. (2019). High-dimensional quantum key distribution based on qudits transmission with quantum Fourier transform. Quantum Information Processing, 18(9), 271.MathSciNet Yan, X. Y., Zhou, N. R., Gong, L. H., Wang, Y. Q., & Wen, X. J. (2019). High-dimensional quantum key distribution based on qudits transmission with quantum Fourier transform. Quantum Information Processing, 18(9), 271.MathSciNet
27.
go back to reference Mao, C. C., Zhang, C. H., Zhang, C. M., & Wang, Q. (2019). Improving the performance of four-intensity decoy-state measurement-device-independent quantum key distribution via heralded pair-coherent sources. Quantum Information Processing, 18(9), 290. Mao, C. C., Zhang, C. H., Zhang, C. M., & Wang, Q. (2019). Improving the performance of four-intensity decoy-state measurement-device-independent quantum key distribution via heralded pair-coherent sources. Quantum Information Processing, 18(9), 290.
28.
go back to reference Liu, T., Zhu, C., Sun, C. Y., Fang, X. X., & Wang, P. P. (2019). Performance analysis of free space quantum key distribution with different wavelengths. Proc. SPIE 11339, AOPC 2019: Quantum Information Technology, 1133909. Liu, T., Zhu, C., Sun, C. Y., Fang, X. X., & Wang, P. P. (2019). Performance analysis of free space quantum key distribution with different wavelengths. Proc. SPIE 11339, AOPC 2019: Quantum Information Technology, 1133909.
29.
go back to reference Huang, B., Liu, L. H., Wang, Y., Huang, Y. M., & Peng, Z. M. (2019). Phase attack on reference pulses of continuous-variable quantum key distribution with real local oscillators. Proc. SPIE 11339, AOPC 2019: Quantum Information Technology, 1133903. Huang, B., Liu, L. H., Wang, Y., Huang, Y. M., & Peng, Z. M. (2019). Phase attack on reference pulses of continuous-variable quantum key distribution with real local oscillators. Proc. SPIE 11339, AOPC 2019: Quantum Information Technology, 1133903.
30.
go back to reference Liang, Y. X., & Liu, X. A. (2013). Method of generating unitary transformation for quantum data compression. Acta Physica Sinica, 62(20), 1–5. Liang, Y. X., & Liu, X. A. (2013). Method of generating unitary transformation for quantum data compression. Acta Physica Sinica, 62(20), 1–5.
31.
go back to reference Liu, X., Liang, Y. X., Nie, M., & Wei, Y. Y. (2017). Low complexity quantum compression algorithm for dimension reduction. Photoelectron Laser, 28(11), 1205–1211. Liu, X., Liang, Y. X., Nie, M., & Wei, Y. Y. (2017). Low complexity quantum compression algorithm for dimension reduction. Photoelectron Laser, 28(11), 1205–1211.
Metadata
Title
Quantum Secure Primary Communication Based on Quantum Information Compression
Authors
Hongyang Ma
Xin Zhang
Pengao Xu
Fen Liu
Publication date
29-04-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07319-w

Other articles of this Issue 4/2020

Wireless Personal Communications 4/2020 Go to the issue