Skip to main content
Top
Published in: Quantum Information Processing 5/2019

01-05-2019

Quantum teleportation of an arbitrary two-qubit state by using two three-qubit GHZ states and the six-qubit entangled state

Authors: Dong-fen Li, Rui-jin Wang, Edward Baagyere

Published in: Quantum Information Processing | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we show that current two different quantum channels of two three-qubit GHZ states and the six-qubit entangled state can be used for quantum teleportation of an arbitrary two-qubit state deterministically. Moreover, we propose two distinct protocols for quantum teleportation of an arbitrary two-qubit state within a three-qubit, by using a single-qubit measurement under the basis and also using a two-qubit projective measurement under the basis \(\{|+\rangle ,|-\rangle \}\), so as to get 16 kinds of possible measured results with equal probability of 1/4. Furthermore, the deterministic quantum teleportation of an arbitrary two-qubit states can be realized in a cavity quantum electrodynamics systems. This is unique, in that a cluster state has a maximal persistence when compared with a entangled state and it is also more robust against decoherence. Furthermore, the schemes are secure against internal and external attacks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cao, Z.L., Yang, M., Guo, G.C.: The scheme for realizing probabilistic teleportation of atomic states and purifying the quantum channel on cavity QED. Phys. Lett. A 308(5), 349–354 (2003)ADSMathSciNetMATHCrossRef Cao, Z.L., Yang, M., Guo, G.C.: The scheme for realizing probabilistic teleportation of atomic states and purifying the quantum channel on cavity QED. Phys. Lett. A 308(5), 349–354 (2003)ADSMathSciNetMATHCrossRef
2.
go back to reference Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)ADSMathSciNetMATHCrossRef Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)ADSMathSciNetMATHCrossRef
3.
go back to reference Ye, L., Guo, G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71(3), 034304 (2005)ADSCrossRef Ye, L., Guo, G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71(3), 034304 (2005)ADSCrossRef
4.
go back to reference Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ–Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)MathSciNetCrossRef Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ–Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)MathSciNetCrossRef
5.
go back to reference Nie, Y.Y., Li, Y.H., Liu, J.C., et al.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297–305 (2011)MathSciNetMATHCrossRef Nie, Y.Y., Li, Y.H., Liu, J.C., et al.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297–305 (2011)MathSciNetMATHCrossRef
6.
go back to reference Nie, Y., Li, Y., Liu, J., et al.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state. Quantum Inf. Process. 11(2), 563–569 (2012)MathSciNetMATHCrossRef Nie, Y., Li, Y., Liu, J., et al.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state. Quantum Inf. Process. 11(2), 563–569 (2012)MathSciNetMATHCrossRef
7.
go back to reference Hou, K., Liu, G.H., Zhang, X.Y., et al.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states. Quantum Inf. Process. 10(4), 463–473 (2011)MathSciNetMATHCrossRef Hou, K., Liu, G.H., Zhang, X.Y., et al.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states. Quantum Inf. Process. 10(4), 463–473 (2011)MathSciNetMATHCrossRef
8.
go back to reference Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states. Eur. Phys. J. D 42(2), 333–340 (2007)ADSMathSciNetCrossRef Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states. Eur. Phys. J. D 42(2), 333–340 (2007)ADSMathSciNetCrossRef
9.
go back to reference Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)ADSCrossRef Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)ADSCrossRef
10.
go back to reference Dong, L., Wang, J.X., Li, Q.Y., et al.: Teleportation of a general two-photon state employing a polarization-entangled \(\chi \) state with nondemolition parity analyses. Quantum Inf. Process. 15(7), 2955–2970 (2016)ADSMathSciNetMATH Dong, L., Wang, J.X., Li, Q.Y., et al.: Teleportation of a general two-photon state employing a polarization-entangled \(\chi \) state with nondemolition parity analyses. Quantum Inf. Process. 15(7), 2955–2970 (2016)ADSMathSciNetMATH
11.
go back to reference Luo, M.X., Deng, Y.: Quantum splitting an arbitrary three-qubit state with \(\chi \)-state. Quantum Inf. Process. 12(2), 773–784 (2013)ADSMathSciNetMATH Luo, M.X., Deng, Y.: Quantum splitting an arbitrary three-qubit state with \(\chi \)-state. Quantum Inf. Process. 12(2), 773–784 (2013)ADSMathSciNetMATH
12.
go back to reference You-Bang, Z., Qun-Yong, Z., Yu-Wu, W.: Schemes for splitting quantum information with four-particle genuine entangled states. Commun. Theor. Phys. 53(5), 847 (2010)ADSMathSciNetMATHCrossRef You-Bang, Z., Qun-Yong, Z., Yu-Wu, W.: Schemes for splitting quantum information with four-particle genuine entangled states. Commun. Theor. Phys. 53(5), 847 (2010)ADSMathSciNetMATHCrossRef
13.
go back to reference Xiu, X.M., Li, Q.Y., Dong, L., et al.: Distributing a multi-photon polarization-entangled state with unitary fidelity via arbitrary collective noise channels. Quantum Inf. Process. 14(1), 361–372 (2015)ADSMathSciNetMATHCrossRef Xiu, X.M., Li, Q.Y., Dong, L., et al.: Distributing a multi-photon polarization-entangled state with unitary fidelity via arbitrary collective noise channels. Quantum Inf. Process. 14(1), 361–372 (2015)ADSMathSciNetMATHCrossRef
15.
go back to reference Zhang, W., Liu, Y.M., Yin, X.F., et al.: Splitting four ensembles of two-qubit quantum information via three Einstein–Podolsky–Rosen pairs. Eur. Phys. J. D 55(1), 189–195 (2009)ADSCrossRef Zhang, W., Liu, Y.M., Yin, X.F., et al.: Splitting four ensembles of two-qubit quantum information via three Einstein–Podolsky–Rosen pairs. Eur. Phys. J. D 55(1), 189–195 (2009)ADSCrossRef
16.
go back to reference Dong, L., Xiu, X.M., Ren, Y.P., et al.: Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements. J. Exp. Theor. Phys. 116(1), 15–19 (2013)ADSCrossRef Dong, L., Xiu, X.M., Ren, Y.P., et al.: Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements. J. Exp. Theor. Phys. 116(1), 15–19 (2013)ADSCrossRef
17.
go back to reference Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetMATHCrossRef Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetMATHCrossRef
19.
go back to reference Murao, M., Jonathan, D., Plenio, M.B., et al.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59(1), 156 (1999)ADSCrossRef Murao, M., Jonathan, D., Plenio, M.B., et al.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59(1), 156 (1999)ADSCrossRef
20.
go back to reference Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)ADSCrossRef Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)ADSCrossRef
21.
go back to reference Wang, X.W., Zhang, D.Y., Tang, S.Q., et al.: Multiparty hierarchical quantum-information splitting. J. Phys. B: At. Mol. Opt. Phys. 44(3), 035505 (2011)ADSCrossRef Wang, X.W., Zhang, D.Y., Tang, S.Q., et al.: Multiparty hierarchical quantum-information splitting. J. Phys. B: At. Mol. Opt. Phys. 44(3), 035505 (2011)ADSCrossRef
22.
go back to reference Wang, X.W., Zhang, D.Y., Tang, S.Q., et al.: Hierarchical quantum information splitting with six-photon cluster states. Int. J. Theor. Phys. 49(11), 2691–2697 (2010)MathSciNetMATHCrossRef Wang, X.W., Zhang, D.Y., Tang, S.Q., et al.: Hierarchical quantum information splitting with six-photon cluster states. Int. J. Theor. Phys. 49(11), 2691–2697 (2010)MathSciNetMATHCrossRef
23.
go back to reference Wang, X.W., Xia, L.X., Wang, Z.Y., et al.: Hierarchical quantum-information splitting. Opt. Commun. 283(6), 1196–1199 (2010)ADSCrossRef Wang, X.W., Xia, L.X., Wang, Z.Y., et al.: Hierarchical quantum-information splitting. Opt. Commun. 283(6), 1196–1199 (2010)ADSCrossRef
24.
go back to reference Wang, R.J., Li, D.F., Deng, F.H.: Quantum information splitting of a two-qubit bell state using a five-qubit entangled state. Int. J. Theor. Phys. 54(9), 3229–3237 (2015)MATHCrossRef Wang, R.J., Li, D.F., Deng, F.H.: Quantum information splitting of a two-qubit bell state using a five-qubit entangled state. Int. J. Theor. Phys. 54(9), 3229–3237 (2015)MATHCrossRef
25.
go back to reference Wang, R.J., Li, D.F., Qin, Z.G.: An immune quantum communication model for dephasing noise using four-qubit cluster state. Int. J. Theor. Phys. 55(1), 609–616 (2016)MATHCrossRef Wang, R.J., Li, D.F., Qin, Z.G.: An immune quantum communication model for dephasing noise using four-qubit cluster state. Int. J. Theor. Phys. 55(1), 609–616 (2016)MATHCrossRef
26.
go back to reference Li, D.F., Wang, R.J., Zhang, F.L., Deng, F.H.: Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state. Quantum Inf. Process. 14(3), 1103–1116 (2015)ADSMathSciNetMATHCrossRef Li, D.F., Wang, R.J., Zhang, F.L., Deng, F.H.: Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state. Quantum Inf. Process. 14(3), 1103–1116 (2015)ADSMathSciNetMATHCrossRef
27.
go back to reference Luo, M.X., Ma, S.Y., Chen, X.B., et al.: Hybrid quantum-state joining and splitting assisted by quantum dots in one-side optical microcavities. Phys. Rev. A 91(4), 042326 (2015)ADSCrossRef Luo, M.X., Ma, S.Y., Chen, X.B., et al.: Hybrid quantum-state joining and splitting assisted by quantum dots in one-side optical microcavities. Phys. Rev. A 91(4), 042326 (2015)ADSCrossRef
28.
29.
go back to reference Imamog, A., Awschalom, D.D., Burkard, G., et al.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83(20), 4204 (1999)ADSCrossRef Imamog, A., Awschalom, D.D., Burkard, G., et al.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83(20), 4204 (1999)ADSCrossRef
Metadata
Title
Quantum teleportation of an arbitrary two-qubit state by using two three-qubit GHZ states and the six-qubit entangled state
Authors
Dong-fen Li
Rui-jin Wang
Edward Baagyere
Publication date
01-05-2019
Publisher
Springer US
Published in
Quantum Information Processing / Issue 5/2019
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2252-3

Other articles of this Issue 5/2019

Quantum Information Processing 5/2019 Go to the issue