Skip to main content
Top
Published in:

01-02-2025

Quantum transport properties of a double-barrier quantum well structure based on V-cut edge-patterned armchair graphene nanoribbon

Authors: Bikramjit Basumatary, Agile Mathew

Published in: Journal of Computational Electronics | Issue 1/2025

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A double-barrier quantum well is created using a larger band gap V-cut modified armchair graphene nanoribbon (AGNR) for the barrier region and a pristine AGNR with a smaller bandgap for the channel region. The numerical non-equilibrium Green’s function (NEGF) method, based on the pi-orbital tight-binding model, is employed to study the quantum transport properties of the device. The effects of various dimensional parameters, such as contact width, channel length, and distance between V-cuts in the barrier region, are investigated. The plot of the local density of states (LDOS) shows the formation of a single quantized quasi-energy state in the channel region, corresponding to a peak in transmission. The V–I characteristics of the device exhibit negative differential resistance (NDR) regions for a certain range of bias values. This device’s resonant tunneling performance parameters are compared with those of a similar, previously reported structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Esaki, L.: New phenomenon in narrow germanium p–n junctions. Phys. Rev. 109(2), 603 (1958)CrossRefMATH Esaki, L.: New phenomenon in narrow germanium p–n junctions. Phys. Rev. 109(2), 603 (1958)CrossRefMATH
2.
go back to reference Tsu, R., Esaki, L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22(11), 562–564 (1973)CrossRefMATH Tsu, R., Esaki, L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22(11), 562–564 (1973)CrossRefMATH
3.
go back to reference Chang, L., Esaki, L., Tsu, R.: Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24(12), 593–595 (1974)CrossRefMATH Chang, L., Esaki, L., Tsu, R.: Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24(12), 593–595 (1974)CrossRefMATH
4.
go back to reference Sollner, T., Goodhue, W., Tannenwald, P., Parker, C., Peck, D.: Resonant tunneling through quantum wells at frequencies up to 2.5 THz. Appl. Phys. Lett. 43(6), 588–590 (1983)CrossRef Sollner, T., Goodhue, W., Tannenwald, P., Parker, C., Peck, D.: Resonant tunneling through quantum wells at frequencies up to 2.5 THz. Appl. Phys. Lett. 43(6), 588–590 (1983)CrossRef
5.
go back to reference Mizuta, H., Tanoue, T.: The physics and applications of resonant tunnelling diodes. Cambridge University Press, London UK (1995)CrossRefMATH Mizuta, H., Tanoue, T.: The physics and applications of resonant tunnelling diodes. Cambridge University Press, London UK (1995)CrossRefMATH
6.
go back to reference Suzuki, S., Asada, M., Teranishi, A., Sugiyama, H., Yokoyama, H.: Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature. Appl. Phys. Lett. 97(24), 242102 (2010)CrossRef Suzuki, S., Asada, M., Teranishi, A., Sugiyama, H., Yokoyama, H.: Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature. Appl. Phys. Lett. 97(24), 242102 (2010)CrossRef
7.
go back to reference Brown, E.R., Eglash, S.J., Turner, G.W., Parker, C., Pantano, J., Calawa, D.: Effect of lattice-mismatched growth on INAs/ALSb resonant-tunneling diodes. IEEE Trans. Electron Dev. 41(6), 879–882 (1994)CrossRef Brown, E.R., Eglash, S.J., Turner, G.W., Parker, C., Pantano, J., Calawa, D.: Effect of lattice-mismatched growth on INAs/ALSb resonant-tunneling diodes. IEEE Trans. Electron Dev. 41(6), 879–882 (1994)CrossRef
8.
go back to reference Zakharova, A., Yen, S.-T., Nilsson, K., Chao, K.-A.: Effects of lattice mismatch and bulk anisotropy on Interband tunneling in broken-gap heterostructures. J. Appl. Phys. 97(6), 063704 (2005)CrossRef Zakharova, A., Yen, S.-T., Nilsson, K., Chao, K.-A.: Effects of lattice mismatch and bulk anisotropy on Interband tunneling in broken-gap heterostructures. J. Appl. Phys. 97(6), 063704 (2005)CrossRef
9.
go back to reference Li, M.-Y., Chen, C.-H., Shi, Y., Li, L.-J.: Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 19(6), 322–335 (2016)CrossRefMATH Li, M.-Y., Chen, C.-H., Shi, Y., Li, L.-J.: Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 19(6), 322–335 (2016)CrossRefMATH
10.
go back to reference Deifallah, M., McMillan, P.F., Corà, F.: Electronic and structural properties of two-dimensional carbon nitride graphenes. J. Phys. Chem. C 112(14), 5447–5453 (2008)CrossRefMATH Deifallah, M., McMillan, P.F., Corà, F.: Electronic and structural properties of two-dimensional carbon nitride graphenes. J. Phys. Chem. C 112(14), 5447–5453 (2008)CrossRefMATH
11.
go back to reference Neto, A.C., Guinea, F., Peres, N.M., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)CrossRefMATH Neto, A.C., Guinea, F., Peres, N.M., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)CrossRefMATH
12.
go back to reference Dutta, S., Pati, S.K.: Novel properties of graphene nanoribbons: a review. J. Mater. Chem. 20(38), 8207–8223 (2010)CrossRefMATH Dutta, S., Pati, S.K.: Novel properties of graphene nanoribbons: a review. J. Mater. Chem. 20(38), 8207–8223 (2010)CrossRefMATH
13.
go back to reference Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., et al.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305), 470–473 (2010)CrossRef Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., et al.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305), 470–473 (2010)CrossRef
14.
go back to reference Tao, C., Jiao, L., Yazyev, O.V., Chen, Y.-C., Feng, J., Zhang, X., Capaz, R.B., Tour, J.M., Zettl, A., Louie, S.G., et al.: Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7(8), 616–620 (2011)CrossRef Tao, C., Jiao, L., Yazyev, O.V., Chen, Y.-C., Feng, J., Zhang, X., Capaz, R.B., Tour, J.M., Zettl, A., Louie, S.G., et al.: Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7(8), 616–620 (2011)CrossRef
15.
go back to reference Ruffieux, P., Wang, S., Yang, B., Sánchez-Sánchez, C., Liu, J., Dienel, T., Talirz, L., Shinde, P., Pignedoli, C.A., Passerone, D., et al.: On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531(7595), 489–492 (2016)CrossRef Ruffieux, P., Wang, S., Yang, B., Sánchez-Sánchez, C., Liu, J., Dienel, T., Talirz, L., Shinde, P., Pignedoli, C.A., Passerone, D., et al.: On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531(7595), 489–492 (2016)CrossRef
16.
go back to reference Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)CrossRef Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)CrossRef
17.
go back to reference Zoghi, M., Goharrizi, A.Y., Saremi, M.: Band gap tuning of armchair graphene nanoribbons by using antidotes. J. Electron. Mater. 46, 340–346 (2017)CrossRefMATH Zoghi, M., Goharrizi, A.Y., Saremi, M.: Band gap tuning of armchair graphene nanoribbons by using antidotes. J. Electron. Mater. 46, 340–346 (2017)CrossRefMATH
18.
go back to reference Hossain, T., Rahaman, M.I.: Band gap tuning and variable quantum barrier of armchair graphene nanoribbons by inducing antidote topologies. J. Comput. Electron. 23(1), 32–41 (2024)CrossRefMATH Hossain, T., Rahaman, M.I.: Band gap tuning and variable quantum barrier of armchair graphene nanoribbons by inducing antidote topologies. J. Comput. Electron. 23(1), 32–41 (2024)CrossRefMATH
19.
go back to reference Martins, T., Miwa, R.H., Da Silva, A.J., Fazzio, A.: Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98(19), 196803 (2007)CrossRef Martins, T., Miwa, R.H., Da Silva, A.J., Fazzio, A.: Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98(19), 196803 (2007)CrossRef
20.
go back to reference Wang, W., Zhao, G.: First principles study of the electronic energy bands and state density of lithium-doped narrow armchair graphene nanoribbons. Solid State Commun. 166, 6–11 (2013)CrossRefMATH Wang, W., Zhao, G.: First principles study of the electronic energy bands and state density of lithium-doped narrow armchair graphene nanoribbons. Solid State Commun. 166, 6–11 (2013)CrossRefMATH
21.
go back to reference Omeroglu, O., Kutlu, E., Narin, P., Lisesivdin, S., Ozbay, E.: Electronic properties of graphene nanoribbons doped with zinc, cadmium, mercury atoms. Phys. E 104, 124–129 (2018)CrossRef Omeroglu, O., Kutlu, E., Narin, P., Lisesivdin, S., Ozbay, E.: Electronic properties of graphene nanoribbons doped with zinc, cadmium, mercury atoms. Phys. E 104, 124–129 (2018)CrossRef
22.
go back to reference Teong, H., Lam, K.-T., Khalid, S.B., Liang, G.: Shape effects in graphene nanoribbon resonant tunneling diodes: a computational study. J. Appl. Phys. 105(8), 084317 (2009)CrossRef Teong, H., Lam, K.-T., Khalid, S.B., Liang, G.: Shape effects in graphene nanoribbon resonant tunneling diodes: a computational study. J. Appl. Phys. 105(8), 084317 (2009)CrossRef
23.
go back to reference Teong, H., Lam, K.-T., Liang, G.: A computational study on the device performance of graphene nanoribbon resonant tunneling diodes. Jpn. J. Appl. Phys. 48(4S), 04C156 (2009)CrossRef Teong, H., Lam, K.-T., Liang, G.: A computational study on the device performance of graphene nanoribbon resonant tunneling diodes. Jpn. J. Appl. Phys. 48(4S), 04C156 (2009)CrossRef
24.
go back to reference Goharrizi, A.Y., Zoghi, M., Saremi, M.: Armchair graphene nanoribbon resonant tunneling diodes using antidote and bn doping. IEEE Trans. Electron Dev. 63(9), 3761–3768 (2016)CrossRef Goharrizi, A.Y., Zoghi, M., Saremi, M.: Armchair graphene nanoribbon resonant tunneling diodes using antidote and bn doping. IEEE Trans. Electron Dev. 63(9), 3761–3768 (2016)CrossRef
25.
go back to reference Yazdanpanah Goharrizi, A.: Resonant tunneling diode by means of compound armchair boron/nitride and graphene nanoribbons. J. Electronic Mater. 48, 1235–1242 (2019)CrossRefMATH Yazdanpanah Goharrizi, A.: Resonant tunneling diode by means of compound armchair boron/nitride and graphene nanoribbons. J. Electronic Mater. 48, 1235–1242 (2019)CrossRefMATH
26.
go back to reference Sanaeepur, M., Jafari, M., Esmaeili, M.: Ultrascaled resonant tunneling diodes based on bn decorated zigzag graphene nanoribbon lateral heterostructures. IEEE Trans. Electron Devices 67(2), 725–729 (2020)CrossRefMATH Sanaeepur, M., Jafari, M., Esmaeili, M.: Ultrascaled resonant tunneling diodes based on bn decorated zigzag graphene nanoribbon lateral heterostructures. IEEE Trans. Electron Devices 67(2), 725–729 (2020)CrossRefMATH
27.
go back to reference Fang, H., Wang, R.-Z., Chen, S.-Y., Yan, M., Song, X.-M., Wang, B.: Strain-induced negative differential resistance in armchair-edge graphene nanoribbons. Appl. Phys. Lett. 98(8), 082108 (2011)CrossRefMATH Fang, H., Wang, R.-Z., Chen, S.-Y., Yan, M., Song, X.-M., Wang, B.: Strain-induced negative differential resistance in armchair-edge graphene nanoribbons. Appl. Phys. Lett. 98(8), 082108 (2011)CrossRefMATH
28.
go back to reference Zoghi, M., Goharrizi, A.Y.: Strain-induced armchair graphene nanoribbon resonant-tunneling diodes. IEEE Trans. Electron Dev. 64(10), 4322–4326 (2017)CrossRef Zoghi, M., Goharrizi, A.Y.: Strain-induced armchair graphene nanoribbon resonant-tunneling diodes. IEEE Trans. Electron Dev. 64(10), 4322–4326 (2017)CrossRef
29.
go back to reference Mishra, M., Das, N.R., Sahoo, N., Sahu, T.: Performance enhancement of armchair graphene nanoribbon resonant tunneling diode using v-shaped potential well. Phys. Scr. 96(12), 124076 (2021)CrossRefMATH Mishra, M., Das, N.R., Sahoo, N., Sahu, T.: Performance enhancement of armchair graphene nanoribbon resonant tunneling diode using v-shaped potential well. Phys. Scr. 96(12), 124076 (2021)CrossRefMATH
30.
go back to reference Lou, S., Lyu, B., Zhou, X., Shen, P., Chen, J., Shi, Z.: Graphene nanoribbons: current status, challenges and opportunities. Quant. Front. 3(1), 3 (2024)CrossRef Lou, S., Lyu, B., Zhou, X., Shen, P., Chen, J., Shi, Z.: Graphene nanoribbons: current status, challenges and opportunities. Quant. Front. 3(1), 3 (2024)CrossRef
31.
go back to reference Fakhrabad, D.V., Shahtahmassebi, N., Askari, M., Ashhadi, M., Ketabi, S.: Tunnel magnetoresistance of the system of ferromagnetic electrode/polyacetylene/ferromagnetic electrode: a green’s function approach. Phys. E 43(2), 620–624 (2010)CrossRef Fakhrabad, D.V., Shahtahmassebi, N., Askari, M., Ashhadi, M., Ketabi, S.: Tunnel magnetoresistance of the system of ferromagnetic electrode/polyacetylene/ferromagnetic electrode: a green’s function approach. Phys. E 43(2), 620–624 (2010)CrossRef
32.
go back to reference Datta, S.: Lessons from Nanoelectronics: A New Perspective on Transport–Part B: Quantum Transport, World Scientific, (2018) Datta, S.: Lessons from Nanoelectronics: A New Perspective on Transport–Part B: Quantum Transport, World Scientific, (2018)
33.
go back to reference Datta, S.: Quantum transport: Atom to transistor. Cambridge University Press, London UK (2005)CrossRefMATH Datta, S.: Quantum transport: Atom to transistor. Cambridge University Press, London UK (2005)CrossRefMATH
34.
go back to reference Basumatary, B., Mathew, A.: Bandstructure and quantum transport properties of AGNR unit cells with V-shaped edge patterning. J. Comput. Electron. 22(6), 1636–1646 (2023)CrossRefMATH Basumatary, B., Mathew, A.: Bandstructure and quantum transport properties of AGNR unit cells with V-shaped edge patterning. J. Comput. Electron. 22(6), 1636–1646 (2023)CrossRefMATH
35.
go back to reference Magda, G.Z., Jin, X., Hagymási, I., Vancsó, P., Osváth, Z., Nemes-Incze, P., Hwang, C., Biro, L.P., Tapasztó, L.: Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514(7524), 608–611 (2014)CrossRef Magda, G.Z., Jin, X., Hagymási, I., Vancsó, P., Osváth, Z., Nemes-Incze, P., Hwang, C., Biro, L.P., Tapasztó, L.: Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514(7524), 608–611 (2014)CrossRef
36.
go back to reference Wei, T., Bao, L., Hauke, F., Hirsch, A.: Recent advances in graphene patterning. ChemPlusChem 85(8), 1655–1668 (2020)CrossRefMATH Wei, T., Bao, L., Hauke, F., Hirsch, A.: Recent advances in graphene patterning. ChemPlusChem 85(8), 1655–1668 (2020)CrossRefMATH
Metadata
Title
Quantum transport properties of a double-barrier quantum well structure based on V-cut edge-patterned armchair graphene nanoribbon
Authors
Bikramjit Basumatary
Agile Mathew
Publication date
01-02-2025
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2025
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02264-4