Skip to main content
Top

2024 | OriginalPaper | Chapter

Quantum Wasserstein and Observability for Quantum Dynamics

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into the intricacies of quantum dynamics, focusing on the Schrödinger and von Neumann equations. It explores the concept of observability in quantum systems, drawing parallels with classical mechanics and the work of Bardos, Lebeau, and Rauch. The study introduces a quantum Wasserstein pseudometric to compare probability densities and density operators, highlighting its application in observability inequalities. The main result is an observability inequality for quantum dynamics under specific geometric conditions, offering insights into the control and observation of quantum systems. The chapter also discusses the propagation of transport costs by quantum and classical dynamics, providing a rigorous framework for understanding these complex phenomena.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
This terminology is borrowed from the dynamics of vortices in fluid mechanics.
 
Literature
1.
go back to reference Anantharaman, N., Léautaud, M., Macià, F.: Wigner measures and observability for the Schrödinger equation on the disk. Invent. Math. 206, 485–599 (2016)MathSciNetCrossRef Anantharaman, N., Léautaud, M., Macià, F.: Wigner measures and observability for the Schrödinger equation on the disk. Invent. Math. 206, 485–599 (2016)MathSciNetCrossRef
2.
go back to reference Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Opti. 30, 1024–1065 (1992)MathSciNetCrossRef Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Opti. 30, 1024–1065 (1992)MathSciNetCrossRef
3.
go back to reference Bourgain, J., Burq, N., Zworski, M.: Control for Schrödinger operators on \(2\)-tori: rough potentials. J. Eur. Math. Soc. 15, 1597–1628 (2013)MathSciNetCrossRef Bourgain, J., Burq, N., Zworski, M.: Control for Schrödinger operators on \(2\)-tori: rough potentials. J. Eur. Math. Soc. 15, 1597–1628 (2013)MathSciNetCrossRef
4.
go back to reference Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York, Dordrecht, Heidelberg, London (2011)CrossRef Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York, Dordrecht, Heidelberg, London (2011)CrossRef
6.
go back to reference Dieudonné, J.: Foundations of Modern Analysis, vol. 1. Academic Press, New York, London, 19690 Dieudonné, J.: Foundations of Modern Analysis, vol. 1. Academic Press, New York, London, 19690
7.
go back to reference Dolecki, S., Russell, D.L.: A general theory of observation and control. SIAM J. Control Optim. 15, 185–220 (1977)MathSciNetCrossRef Dolecki, S., Russell, D.L.: A general theory of observation and control. SIAM J. Control Optim. 15, 185–220 (1977)MathSciNetCrossRef
8.
go back to reference Fabre, C., Quelques résultats de contrôlabilité exacte de l’équation de Schrödinger. Application à l’équation des plaques vibrantes. C. R. Acad. Sci. Paris Sér. I Math. 312, 61–66 (1991) Fabre, C., Quelques résultats de contrôlabilité exacte de l’équation de Schrödinger. Application à l’équation des plaques vibrantes. C. R. Acad. Sci. Paris Sér. I Math. 312, 61–66 (1991)
9.
go back to reference Fabre, C.: Résultats de contrôlabilité exacte interne pour l’équation de Schrödinger et leurs lirnites asymptotique: applications à certaines équations de plaques vibrantes Asymptotic Anal. 5, 343–379 (1992) Fabre, C.: Résultats de contrôlabilité exacte interne pour l’équation de Schrödinger et leurs lirnites asymptotique: applications à certaines équations de plaques vibrantes Asymptotic Anal. 5, 343–379 (1992)
10.
go back to reference Golse, F.: From the \(N\)-body Schrödinger equation to the Vlasov equation. In: From particle systems to partial differential equations. PSPDE IV, Braga, Portugal, 16–18 Dec. 2015. Springer Proceedings in Mathematics & Statistics, vol. 209, pp. 199–219 (2017) Golse, F.: From the \(N\)-body Schrödinger equation to the Vlasov equation. In: From particle systems to partial differential equations. PSPDE IV, Braga, Portugal, 16–18 Dec. 2015. Springer Proceedings in Mathematics & Statistics, vol. 209, pp. 199–219 (2017)
11.
go back to reference Golse, F., Paul, T.: The Schrödinger equation in the mean-field and semiclassical regime. Arch. Rational Mech. Anal. 223, 57–94 (2017)MathSciNetCrossRef Golse, F., Paul, T.: The Schrödinger equation in the mean-field and semiclassical regime. Arch. Rational Mech. Anal. 223, 57–94 (2017)MathSciNetCrossRef
12.
13.
go back to reference Golse, F., Paul, T.: Quantitative observability for the Schrödinger and Heisenberg equations: an optimal transport approach. Math. Models Methods Appl. Sci. 32, 941–963 (2022)MathSciNetCrossRef Golse, F., Paul, T.: Quantitative observability for the Schrödinger and Heisenberg equations: an optimal transport approach. Math. Models Methods Appl. Sci. 32, 941–963 (2022)MathSciNetCrossRef
14.
go back to reference Golse, F., Paul, T.: Optimal transport pseudometrics for quantum and classical densities. J. Funct. Anal. 32, 109417 (2022)MathSciNetCrossRef Golse, F., Paul, T.: Optimal transport pseudometrics for quantum and classical densities. J. Funct. Anal. 32, 109417 (2022)MathSciNetCrossRef
15.
go back to reference Lasiecka, I., Triggiani, R., Zhang, X.: Global Uniqueness, Observability and Stabilization of Nonconservative Schrödinger Equations Via Pointwise Carleman Estimates. Part I: \(H^1(\varOmega )\)-Estimates. J. Inv. Ill-Posed Probl. 11, 1–63 (2003) Lasiecka, I., Triggiani, R., Zhang, X.: Global Uniqueness, Observability and Stabilization of Nonconservative Schrödinger Equations Via Pointwise Carleman Estimates. Part I: \(H^1(\varOmega )\)-Estimates. J. Inv. Ill-Posed Probl. 11, 1–63 (2003)
16.
go back to reference Lasiecka, I., Triggiani, R., Zhang, X.: Global Uniqueness, observability and stabilization of nonconservative Schrödinger Equations Via Pointwise Carleman Estimates. Part II: \(L^2(\varOmega )\)-Estimates. J. Inv. Ill-Posed Probl. 12, 183–231 (2004) Lasiecka, I., Triggiani, R., Zhang, X.: Global Uniqueness, observability and stabilization of nonconservative Schrödinger Equations Via Pointwise Carleman Estimates. Part II: \(L^2(\varOmega )\)-Estimates. J. Inv. Ill-Posed Probl. 12, 183–231 (2004)
17.
18.
go back to reference Lebeau, G.: Contrôle de l’équation de Schrödinger. J. Math. Pures et Appl. 71, 267–291 (1992)MathSciNet Lebeau, G.: Contrôle de l’équation de Schrödinger. J. Math. Pures et Appl. 71, 267–291 (1992)MathSciNet
19.
go back to reference Lions, J.-L.: Contrôlabilité Exacte, Perturbation et Stabilisation de Systèmes Distribués. Tome 1: Contrôlabilité Exacte. Masson, Paris (1988) Lions, J.-L.: Contrôlabilité Exacte, Perturbation et Stabilisation de Systèmes Distribués. Tome 1: Contrôlabilité Exacte. Masson, Paris (1988)
20.
go back to reference Melrose, R.B., Sjöstrand, J.: Singularities of boundary value problems I. Commun. Pure Appl. Math. 31, 593–617 (1978)MathSciNetCrossRef Melrose, R.B., Sjöstrand, J.: Singularities of boundary value problems I. Commun. Pure Appl. Math. 31, 593–617 (1978)MathSciNetCrossRef
21.
go back to reference Melrose, R.B., Sjöstrand, J.: Singularities of boundary value Problems II. Commun. Pure Appl. Math. 35, 129–168 (1982)MathSciNetCrossRef Melrose, R.B., Sjöstrand, J.: Singularities of boundary value Problems II. Commun. Pure Appl. Math. 35, 129–168 (1982)MathSciNetCrossRef
22.
23.
go back to reference Privat, Y., Trélat, E., Zuazua, E.: Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains. J. Eur. Math. Soc. 18, 1043–1111 (2016)MathSciNetCrossRef Privat, Y., Trélat, E., Zuazua, E.: Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains. J. Eur. Math. Soc. 18, 1043–1111 (2016)MathSciNetCrossRef
24.
go back to reference Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I: Functional Analysis. Revised edition. Academic Press, Inc. (1980) Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I: Functional Analysis. Revised edition. Academic Press, Inc. (1980)
25.
go back to reference Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness. Academic Press, Inc. (1975) Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness. Academic Press, Inc. (1975)
26.
go back to reference Tenenbaum, G., Tucsnak, M.: Fast and strongly localized observation for the Schrödinger equation. Trans. Am. Math. Soc. 361, 951–977 (2009)CrossRef Tenenbaum, G., Tucsnak, M.: Fast and strongly localized observation for the Schrödinger equation. Trans. Am. Math. Soc. 361, 951–977 (2009)CrossRef
27.
go back to reference Villani, C.: Topics in Optimal Transportation. American Mathematical Society, Providence RI (2003)CrossRef Villani, C.: Topics in Optimal Transportation. American Mathematical Society, Providence RI (2003)CrossRef
Metadata
Title
Quantum Wasserstein and Observability for Quantum Dynamics
Author
François Golse
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-65195-3_6

Premium Partner