Skip to main content
Top
Published in:

2024 | OriginalPaper | Chapter

Quasi Continuous Level Monte Carlo for Random Elliptic PDEs

Authors : Cedric Aaron Beschle, Andrea Barth

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper provides a framework in which multilevel Monte Carlo and continuous level Monte Carlo can be compared. In continuous level Monte Carlo the level of refinement is determined by an exponentially distributed random variable, which therefore heavily influences the computational complexity. We propose in this paper a variant of the algorithm, where the exponentially distributed random variable is generated by a quasi Monte Carlo sequence, resulting in a significant variance reduction. In the examples presented the quasi continuous level Monte Carlo algorithm outperforms multilevel and continuous level Monte Carlo by a clear margin.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg. 142, 1–88 (1997)MathSciNetCrossRef Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg. 142, 1–88 (1997)MathSciNetCrossRef
2.
go back to reference Alnaes, M.S. et al.: The FEniCS project version 1.5. Arch. Numer. Softw. 3 (2015) Alnaes, M.S. et al.: The FEniCS project version 1.5. Arch. Numer. Softw. 3 (2015)
3.
go back to reference Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients. Comput. (Arch. Elektron. Rechnen) 5, 207–213 (1970) Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients. Comput. (Arch. Elektron. Rechnen) 5, 207–213 (1970)
4.
go back to reference Babuška, I., Rheinboldt, W.C.: A-posteriori error estimates for the finite element method. Int. J. Numer. Meth. Eng. 12, 1597–1615 (1978)CrossRef Babuška, I., Rheinboldt, W.C.: A-posteriori error estimates for the finite element method. Int. J. Numer. Meth. Eng. 12, 1597–1615 (1978)CrossRef
6.
go back to reference Barth, A., Stein, A.: A study of elliptic partial differential equations with jump diffusion coefficients. SIAM/ASA J. Uncertain. Quantif. 6, 1707–1743 (2018)MathSciNetCrossRef Barth, A., Stein, A.: A study of elliptic partial differential equations with jump diffusion coefficients. SIAM/ASA J. Uncertain. Quantif. 6, 1707–1743 (2018)MathSciNetCrossRef
7.
go back to reference Beschle, C.A., Barth, A.: Complexity analysis of quasi continuous level Monte Carlo. In: ESAIM: M2AN. Special issue—To commemorate Assyr Abdulle (2024, to appear) Beschle, C.A., Barth, A.: Complexity analysis of quasi continuous level Monte Carlo. In: ESAIM: M2AN. Special issue—To commemorate Assyr Abdulle (2024, to appear)
8.
go back to reference Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85, 579–608 (2000)MathSciNetCrossRef Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85, 579–608 (2000)MathSciNetCrossRef
9.
go back to reference Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, vol. 15, 3rd edn. Texts in Applied Mathematics. Springer, New York (2008) Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, vol. 15, 3rd edn. Texts in Applied Mathematics. Springer, New York (2008)
11.
go back to reference Clément, P.: Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 9, 77–84 (1975) Clément, P.: Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 9, 77–84 (1975)
12.
go back to reference Cliffe, K.A., Giles, M.B., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14, 3–15 (2011)MathSciNetCrossRef Cliffe, K.A., Giles, M.B., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14, 3–15 (2011)MathSciNetCrossRef
13.
go back to reference Detommaso, G., Dodwell, T., Scheichl, R.: Continuous level Monte Carlo and sample-adaptive model hierarchies. SIAM/ASA J. Uncertain. Quantif. 7, 93–116 (2019)MathSciNetCrossRef Detommaso, G., Dodwell, T., Scheichl, R.: Continuous level Monte Carlo and sample-adaptive model hierarchies. SIAM/ASA J. Uncertain. Quantif. 7, 93–116 (2019)MathSciNetCrossRef
15.
go back to reference Evans, L.C.: Partial differential equations, vol. 19, 2nd edn. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010) Evans, L.C.: Partial differential equations, vol. 19, 2nd edn. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010)
18.
go back to reference Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230, 3668–3694 (2011)MathSciNetCrossRef Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230, 3668–3694 (2011)MathSciNetCrossRef
19.
go back to reference Graham, I.G., et al.: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131, 329–368 (2015)MathSciNetCrossRef Graham, I.G., et al.: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131, 329–368 (2015)MathSciNetCrossRef
20.
go back to reference Grätsch, T., Bathe, K.-J.: A posteriori error estimation techniques in practical finite element analysis. Comput. Struct. 83, 235–265 (2005)MathSciNetCrossRef Grätsch, T., Bathe, K.-J.: A posteriori error estimation techniques in practical finite element analysis. Comput. Struct. 83, 235–265 (2005)MathSciNetCrossRef
21.
go back to reference Hackbusch, W.: Elliptic differential equations, vol. 18, 2nd edn. Springer Series in Computational Mathematics. Springer, Berlin (2017). Theory and numerical treatment Hackbusch, W.: Elliptic differential equations, vol. 18, 2nd edn. Springer Series in Computational Mathematics. Springer, Berlin (2017). Theory and numerical treatment
23.
go back to reference Harris, C.R., et al.: Array programming with NumPy. Nature 585, 357–362 (2020)CrossRef Harris, C.R., et al.: Array programming with NumPy. Nature 585, 357–362 (2020)CrossRef
24.
go back to reference Knabner, P., Angermann, L.: Numerical methods for elliptic and parabolic partial differential equations, vol. 44. Texts in Applied Mathematics. Springer, New York (2003) Knabner, P., Angermann, L.: Numerical methods for elliptic and parabolic partial differential equations, vol. 44. Texts in Applied Mathematics. Springer, New York (2003)
25.
go back to reference Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50, 3351–3374 (2012)MathSciNetCrossRef Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50, 3351–3374 (2012)MathSciNetCrossRef
26.
go back to reference Kuo, F.Y., Schwab, C., Sloan, I.H.: Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients. Found. Comput. Math. 15, 411–449 (2015)MathSciNetCrossRef Kuo, F.Y., Schwab, C., Sloan, I.H.: Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients. Found. Comput. Math. 15, 411–449 (2015)MathSciNetCrossRef
28.
29.
go back to reference Niederreiter, H.: Random number generation and quasi-Monte Carlo methods, vol. 63. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992) Niederreiter, H.: Random number generation and quasi-Monte Carlo methods, vol. 63. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)
30.
go back to reference Owen, A.B.: Randomly permuted \((t,m,s)\)-nets and \((t,s)\)-sequences. In: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Las Vegas, NV (1994). Lecture Notes in Statistics, vol. 106, pp. 299–317. Springer, New York (1995) Owen, A.B.: Randomly permuted \((t,m,s)\)-nets and \((t,s)\)-sequences. In: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Las Vegas, NV (1994). Lecture Notes in Statistics, vol. 106, pp. 299–317. Springer, New York (1995)
32.
go back to reference Petzoldt, M.: Regularity results for Laplace interface problems in two dimensions. Z. Anal. Anwendungen 20, 431–455 (2001)MathSciNetCrossRef Petzoldt, M.: Regularity results for Laplace interface problems in two dimensions. Z. Anal. Anwendungen 20, 431–455 (2001)MathSciNetCrossRef
33.
go back to reference Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16, 47–75 (2002)MathSciNetCrossRef Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16, 47–75 (2002)MathSciNetCrossRef
35.
go back to reference Sobol, I.M.: Distribution of points in a cube and approximate evaluation of integrals. Ž. Vyčisl. Mat i Mat. Fiz. 7, 784–802 (1967)MathSciNet Sobol, I.M.: Distribution of points in a cube and approximate evaluation of integrals. Ž. Vyčisl. Mat i Mat. Fiz. 7, 784–802 (1967)MathSciNet
36.
go back to reference Teckentrup, A.L., Scheichl, R., Giles, M.B., Ullmann, E.: Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer. Math. 125, 569–600 (2013)MathSciNetCrossRef Teckentrup, A.L., Scheichl, R., Giles, M.B., Ullmann, E.: Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer. Math. 125, 569–600 (2013)MathSciNetCrossRef
38.
go back to reference Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020) Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020)
Metadata
Title
Quasi Continuous Level Monte Carlo for Random Elliptic PDEs
Authors
Cedric Aaron Beschle
Andrea Barth
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_1

Premium Partner