Skip to main content
Top
Published in:

27-05-2024

Quasi-projective Synchronization Control of Delayed Stochastic Quaternion-Valued Fuzzy Cellular Neural Networks with Mismatched Parameters

Authors: Xiaofang Meng, Yu Fei, Zhouhong Li

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper deals with the quasi-projective synchronization problem of delayed stochastic quaternion fuzzy cellular neural networks with mismatch parameters. Although the parameter mismatch of the drive-response system increases the computational complexity of the article, it is of practical significance to consider the existence of deviations between the two systems. The method of this article is to design an appropriate controller and construct Lyapunov functional and stochastic analysis theory based on the Itô formula in the quaternion domain. We adopt the non-decomposable method of quaternion FCNN, which preserves the original data and reduces computational effort. We obtain sufficient conditions for quasi-projective synchronization of the considered random quaternion numerical FCNNs with mismatched parameters. Additionally, we estimate the error bounds of quasi-projective synchronization and then carry out a numerical example to verify their validity. Our results are novel even if the considered neural networks degenerate into real-valued or complex-valued neural networks. This article provides a good research idea for studying the quasi-projective synchronization problem of random quaternion numerical FCNN with time delay and has obtained good results. The method in this article can also be used to study the quasi-projective synchronization of a Clifford-valued neural network.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yang T, Yang LB, Wu CW, Chua LO. Fuzzy cellular neural networks: theory. In: 1996 Fourth IEEE International Workshop on Cellular Neural Networks and Their Applications Proceedings (CNNA-96). 1996; pp 181–6. IEEE. Yang T, Yang LB, Wu CW, Chua LO. Fuzzy cellular neural networks: theory. In: 1996 Fourth IEEE International Workshop on Cellular Neural Networks and Their Applications Proceedings (CNNA-96). 1996; pp 181–6. IEEE.
2.
go back to reference Yang T, Yang LB, Wu CW, Chua LO. Fuzzy cellular neural networks: applications. In: 1996 Fourth IEEE International Workshop on Cellular Neural Networks and Their Applications Proceedings (CNNA-96). 1996; pp 225–30. IEEE. Yang T, Yang LB, Wu CW, Chua LO. Fuzzy cellular neural networks: applications. In: 1996 Fourth IEEE International Workshop on Cellular Neural Networks and Their Applications Proceedings (CNNA-96). 1996; pp 225–30. IEEE.
3.
go back to reference Yuan K, Cao JD, Deng JM. Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays. Neurocomputing. 2006;69(13–15):1619–27.CrossRef Yuan K, Cao JD, Deng JM. Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays. Neurocomputing. 2006;69(13–15):1619–27.CrossRef
4.
go back to reference Aouiti C, Sakthivel R, Touati F. Global dissipativity of fuzzy cellular neural networks with inertial term and proportional delays. Int J Syst Sci. 2020;51(8):1392–405.MathSciNetCrossRef Aouiti C, Sakthivel R, Touati F. Global dissipativity of fuzzy cellular neural networks with inertial term and proportional delays. Int J Syst Sci. 2020;51(8):1392–405.MathSciNetCrossRef
5.
go back to reference Huang ZD. Almost periodic solutions for fuzzy cellular neural networks with time-varying delays. Neural Comput Appl. 2017;28(8):2313–20.CrossRef Huang ZD. Almost periodic solutions for fuzzy cellular neural networks with time-varying delays. Neural Comput Appl. 2017;28(8):2313–20.CrossRef
6.
go back to reference Wang YF, Ishibuchi H, Er MJ, Zhu JH. Unsupervised multilayer fuzzy neural networks for image clustering. Inf Sci. 2023;622:682–709. Wang YF, Ishibuchi H, Er MJ, Zhu JH. Unsupervised multilayer fuzzy neural networks for image clustering. Inf Sci. 2023;622:682–709.
7.
go back to reference Liao XX, Mao XR. Exponential stability and instability of stochastic neural networks. Stoch Anal Appl. 1996;14(2):165–85. Liao XX, Mao XR. Exponential stability and instability of stochastic neural networks. Stoch Anal Appl. 1996;14(2):165–85.
8.
9.
go back to reference Balasubramaniam P, Ali MS, Arik S. Global asymptotic stability of stochastic fuzzy cellular neural networks with multiple time-varying delays. Expert Syst Appl. 2010;37(12):7737–44.CrossRef Balasubramaniam P, Ali MS, Arik S. Global asymptotic stability of stochastic fuzzy cellular neural networks with multiple time-varying delays. Expert Syst Appl. 2010;37(12):7737–44.CrossRef
10.
go back to reference Zhao HY, Ding N, Chen L. Almost sure exponential stability of stochastic fuzzy cellular neural networks with delays. Chaos Solitons Fractals. 2009;40(4):1653–9.MathSciNetCrossRef Zhao HY, Ding N, Chen L. Almost sure exponential stability of stochastic fuzzy cellular neural networks with delays. Chaos Solitons Fractals. 2009;40(4):1653–9.MathSciNetCrossRef
11.
go back to reference Gan QT, Yang YZ, Fan SL, Wang YW. Synchronization of stochastic fuzzy cellular neural networks with leakage delay based on adaptive control. Differ Equ Dynam Syst. 2014;22(3):319–32.MathSciNetCrossRef Gan QT, Yang YZ, Fan SL, Wang YW. Synchronization of stochastic fuzzy cellular neural networks with leakage delay based on adaptive control. Differ Equ Dynam Syst. 2014;22(3):319–32.MathSciNetCrossRef
12.
go back to reference Fang WX, Tao X, Li BW. Robustness analysis of fuzzy cellular neural network with deviating argument and stochastic disturbances. IEEE Access. 2023;11:3717–28.CrossRef Fang WX, Tao X, Li BW. Robustness analysis of fuzzy cellular neural network with deviating argument and stochastic disturbances. IEEE Access. 2023;11:3717–28.CrossRef
13.
go back to reference Matsui N, Isokawa T, Kusamichi H, Peper F, Nishimura H. Quaternion neural network with geometrical operators. J Intell Fuzzy Syst. 2004;15(3–4):149–64. Matsui N, Isokawa T, Kusamichi H, Peper F, Nishimura H. Quaternion neural network with geometrical operators. J Intell Fuzzy Syst. 2004;15(3–4):149–64.
14.
go back to reference Luo LC, Feng H, Ding LJ. Color image compression based on quaternion neural network principal component analysis. In Proceedings of the 2010 International Conference on Multimedia Technology, ICMT 2010, China, 2010. Luo LC, Feng H, Ding LJ. Color image compression based on quaternion neural network principal component analysis. In Proceedings of the 2010 International Conference on Multimedia Technology, ICMT 2010, China, 2010.
15.
go back to reference Tu ZW, Zhao YX, Ding N, Teng YM, Zhang W. Stability analysis of quaternion-valued neural networks with both discrete and distributed delays. Appl Math Comput. 2019;343:342–53.MathSciNet Tu ZW, Zhao YX, Ding N, Teng YM, Zhang W. Stability analysis of quaternion-valued neural networks with both discrete and distributed delays. Appl Math Comput. 2019;343:342–53.MathSciNet
16.
go back to reference Wu YQ, Tu ZW, Dai NN, Wang LW, Hu N, Peng T. Stability analysis of quaternion-valued neutral neural networks with generalized activation functions. Cogn Comput. 2023; pp 1-12. Wu YQ, Tu ZW, Dai NN, Wang LW, Hu N, Peng T. Stability analysis of quaternion-valued neutral neural networks with generalized activation functions. Cogn Comput. 2023; pp 1-12.
17.
go back to reference Liu Y, Zhang DD, Lou JG, Lu JQ, Cao JD. Stability analysis of quaternion-valued neural networks: decomposition and direct approaches. IEEE Trans Neural Netw Learn Syst. 2018;29(9):4201–11.CrossRef Liu Y, Zhang DD, Lou JG, Lu JQ, Cao JD. Stability analysis of quaternion-valued neural networks: decomposition and direct approaches. IEEE Trans Neural Netw Learn Syst. 2018;29(9):4201–11.CrossRef
18.
go back to reference Zhao NN, Qiao YH. Global exponential synchronization of Clifford-valued memristive fuzzy neural networks with delayed impulses. Cogn Comput. 2023; pp 1-11. Zhao NN, Qiao YH. Global exponential synchronization of Clifford-valued memristive fuzzy neural networks with delayed impulses. Cogn Comput. 2023; pp 1-11.
19.
go back to reference Wei WL, Hu C, Yu J, Jiang HJ. Fixed/preassigned-time synchronization of quaternion-valued neural networks involving delays and discontinuous activations: a direct approach. Acta Math Sci. 2023;43(3):1439–61.MathSciNetCrossRef Wei WL, Hu C, Yu J, Jiang HJ. Fixed/preassigned-time synchronization of quaternion-valued neural networks involving delays and discontinuous activations: a direct approach. Acta Math Sci. 2023;43(3):1439–61.MathSciNetCrossRef
20.
go back to reference Li RX, Cao JD. Passivity and dissipativity of fractional-order quaternion-valued fuzzy memristive neural networks: nonlinear scalarization approach. IEEE Trans Cybern. 2020;52(5):2821–32.CrossRef Li RX, Cao JD. Passivity and dissipativity of fractional-order quaternion-valued fuzzy memristive neural networks: nonlinear scalarization approach. IEEE Trans Cybern. 2020;52(5):2821–32.CrossRef
21.
go back to reference Jian JG, Wu K, Wang BX. Global Mittag-Leffler boundedness of fractional-order fuzzy quaternion-valued neural networks with linear threshold neurons. IEEE Trans Fuzzy Syst. 2020;29(10):3154–64. Jian JG, Wu K, Wang BX. Global Mittag-Leffler boundedness of fractional-order fuzzy quaternion-valued neural networks with linear threshold neurons. IEEE Trans Fuzzy Syst. 2020;29(10):3154–64.
22.
go back to reference Li RX, Cao JD. Stabilization and synchronization control of quaternion-valued fuzzy memristive neural networks: Nonlinear scalarization approach. Fuzzy Sets Syst. 2024;477: 108832.MathSciNetCrossRef Li RX, Cao JD. Stabilization and synchronization control of quaternion-valued fuzzy memristive neural networks: Nonlinear scalarization approach. Fuzzy Sets Syst. 2024;477: 108832.MathSciNetCrossRef
23.
go back to reference Shen SP, Li YK. \(S^{p}\)-almost periodic solutions of Clifford-valued fuzzy cellular neural networks with time-varying delays. Neural Process Lett. 2020;51(2):1749–69.CrossRef Shen SP, Li YK. \(S^{p}\)-almost periodic solutions of Clifford-valued fuzzy cellular neural networks with time-varying delays. Neural Process Lett. 2020;51(2):1749–69.CrossRef
25.
go back to reference Yang T, Chua LO. Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans Circuits Syst I Fundam Theory Appl. 1997;44(10):976–88.MathSciNetCrossRef Yang T, Chua LO. Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans Circuits Syst I Fundam Theory Appl. 1997;44(10):976–88.MathSciNetCrossRef
26.
go back to reference Huang X, Cao JD. Generalized synchronization for delayed chaotic neural networks: a novel coupling scheme. Nonlinearity. 2006;19(19):2797–811.MathSciNetCrossRef Huang X, Cao JD. Generalized synchronization for delayed chaotic neural networks: a novel coupling scheme. Nonlinearity. 2006;19(19):2797–811.MathSciNetCrossRef
27.
go back to reference Pan LJ, Cao JD, Hu JQ. Synchronization for complex networks with Markov switching via matrix measure approach. Appl Math Model. 2015;39(18):5636–49.MathSciNetCrossRef Pan LJ, Cao JD, Hu JQ. Synchronization for complex networks with Markov switching via matrix measure approach. Appl Math Model. 2015;39(18):5636–49.MathSciNetCrossRef
28.
go back to reference Wang LM, He HB, Zeng ZG. Global synchronization of fuzzy memristive neural networks with discrete and distributed delays. IEEE Trans Fuzzy Syst. 2019;28(9):2022–34.CrossRef Wang LM, He HB, Zeng ZG. Global synchronization of fuzzy memristive neural networks with discrete and distributed delays. IEEE Trans Fuzzy Syst. 2019;28(9):2022–34.CrossRef
29.
go back to reference Zhang H, Cheng YH, Zhang WW, Zhang HM. Time-dependent and Caputo derivative order-dependent quasi-uniform synchronization on fuzzy neural networks with proportional and distributed delays. Math Comput Simul. 2023;203:846–57.MathSciNetCrossRef Zhang H, Cheng YH, Zhang WW, Zhang HM. Time-dependent and Caputo derivative order-dependent quasi-uniform synchronization on fuzzy neural networks with proportional and distributed delays. Math Comput Simul. 2023;203:846–57.MathSciNetCrossRef
30.
go back to reference Duan L, Wei H, Huang LH. Finite-time synchronization of delayed fuzzy cellular neural networks with discontinuous activations. Fuzzy Sets Syst. 2019;361:56–70.MathSciNetCrossRef Duan L, Wei H, Huang LH. Finite-time synchronization of delayed fuzzy cellular neural networks with discontinuous activations. Fuzzy Sets Syst. 2019;361:56–70.MathSciNetCrossRef
31.
go back to reference Kumar A, Das S, Yadav VK, Cao JD, Huang CX. Synchronizations of fuzzy cellular neural networks with proportional time-delay. AIMS Mathematics. 2021;6(10):10620–41.MathSciNetCrossRef Kumar A, Das S, Yadav VK, Cao JD, Huang CX. Synchronizations of fuzzy cellular neural networks with proportional time-delay. AIMS Mathematics. 2021;6(10):10620–41.MathSciNetCrossRef
32.
go back to reference Gan QT, Xu R, Kang XB. Synchronization of chaotic neural networks with mixed time delays. Commun Nonlinear Sci Numer Simul. 2011;16(2):966–74.MathSciNetCrossRef Gan QT, Xu R, Kang XB. Synchronization of chaotic neural networks with mixed time delays. Commun Nonlinear Sci Numer Simul. 2011;16(2):966–74.MathSciNetCrossRef
33.
go back to reference Ren FL, Cao JD. Anti-synchronization of stochastic perturbed delayed chaotic neural networks. Neural Comput Appl. 2009;18(5):515–21.CrossRef Ren FL, Cao JD. Anti-synchronization of stochastic perturbed delayed chaotic neural networks. Neural Comput Appl. 2009;18(5):515–21.CrossRef
34.
go back to reference Wang RB, Zhang ZK, Qu JY, Cao JT. Phase synchronization motion and neural coding in dynamic transmission of neural information. IEEE Trans Neural Networks. 2011;22(7):1097–106.CrossRef Wang RB, Zhang ZK, Qu JY, Cao JT. Phase synchronization motion and neural coding in dynamic transmission of neural information. IEEE Trans Neural Networks. 2011;22(7):1097–106.CrossRef
35.
go back to reference Yang XS, Cao JD, Long Y, Rui WG. Adaptive lag synchronization for competitive neural networks with mixed delays and uncertain hybrid perturbations. IEEE Trans Neural Networks. 2010;21(10):1656–67.CrossRef Yang XS, Cao JD, Long Y, Rui WG. Adaptive lag synchronization for competitive neural networks with mixed delays and uncertain hybrid perturbations. IEEE Trans Neural Networks. 2010;21(10):1656–67.CrossRef
36.
go back to reference Liu XY, Cao JD, Yu WW. Filippov systems and quasi-synchronization control for switched networks. Chaos Interdisciplinary J Nonlinear Sci. 2012;22(3):033110. Liu XY, Cao JD, Yu WW. Filippov systems and quasi-synchronization control for switched networks. Chaos Interdisciplinary J Nonlinear Sci. 2012;22(3):033110.
37.
go back to reference Mainieri R, Rehacek J. Projective synchronization in three-dimensional chaotic systems. Phys Rev Lett. 1999;82(15):3042.CrossRef Mainieri R, Rehacek J. Projective synchronization in three-dimensional chaotic systems. Phys Rev Lett. 1999;82(15):3042.CrossRef
38.
go back to reference Chen S, Cao JD. Projective synchronization of neural networks with mixed time-varying delays and parameter mismatch. Nonlinear Dyn. 2012;67(2):1397–406.MathSciNetCrossRef Chen S, Cao JD. Projective synchronization of neural networks with mixed time-varying delays and parameter mismatch. Nonlinear Dyn. 2012;67(2):1397–406.MathSciNetCrossRef
39.
go back to reference Pu H, Li FJ. Fixed-time projective synchronization of delayed memristive neural networks via aperiodically semi-intermittent switching control. ISA Trans. 2023;133:302–16.CrossRef Pu H, Li FJ. Fixed-time projective synchronization of delayed memristive neural networks via aperiodically semi-intermittent switching control. ISA Trans. 2023;133:302–16.CrossRef
40.
go back to reference Li HL, Hu C, Cao JD, Jiang HJ, Alsaedi A. Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays. Neural Netw. 2019;118:102–9. Li HL, Hu C, Cao JD, Jiang HJ, Alsaedi A. Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays. Neural Netw. 2019;118:102–9.
41.
go back to reference Wu X, Liu ST, Wang HY. Pinning synchronization of stochastic neutral memristive neural networks with reaction-diffusion terms. Neural Netw. 2023;157:1–10. Wu X, Liu ST, Wang HY. Pinning synchronization of stochastic neutral memristive neural networks with reaction-diffusion terms. Neural Netw. 2023;157:1–10.
42.
go back to reference Vadivel R, Hammachukiattikul P, Zhu QX, Gunasekaran N. Event-triggered synchronization for stochastic delayed neural networks: Passivity and passification case. Asian J Control. 2023;25(4):2681-2698. Vadivel R, Hammachukiattikul P, Zhu QX, Gunasekaran N. Event-triggered synchronization for stochastic delayed neural networks: Passivity and passification case. Asian J Control. 2023;25(4):2681-2698.
43.
go back to reference Li RX, Gao XB, Cao JD. Exponential synchronization of stochastic memristive neural networks with time-varying delays. Neural Process Lett. 2019;50(1):459–75.CrossRef Li RX, Gao XB, Cao JD. Exponential synchronization of stochastic memristive neural networks with time-varying delays. Neural Process Lett. 2019;50(1):459–75.CrossRef
44.
go back to reference Guo RN, Lv WS, Zhang ZY. Quasi-projective synchronization of stochastic complex-valued neural networks with time-varying delay and mismatched parameters. Neurocomputing. 2020;415:184–92.CrossRef Guo RN, Lv WS, Zhang ZY. Quasi-projective synchronization of stochastic complex-valued neural networks with time-varying delay and mismatched parameters. Neurocomputing. 2020;415:184–92.CrossRef
45.
go back to reference Liu YF, Shen B, Sun J. Stability and synchronization for complex-valued neural networks with stochastic parameters and mixed time delays. Cogn Neurodyn. 2023;17(5):1213–27.CrossRef Liu YF, Shen B, Sun J. Stability and synchronization for complex-valued neural networks with stochastic parameters and mixed time delays. Cogn Neurodyn. 2023;17(5):1213–27.CrossRef
46.
go back to reference Li RX, Cao JD, Xue CF, Manivannan R. Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks. Appl Math Comput. 2021;395: 125851.MathSciNet Li RX, Cao JD, Xue CF, Manivannan R. Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks. Appl Math Comput. 2021;395: 125851.MathSciNet
47.
go back to reference Dai LH, Hou YY. Mean-square exponential input-to-state stability of stochastic quaternion-valued neural networks with time-varying delays. Adv Difference Equ. 2021;2021(362):1–15.MathSciNet Dai LH, Hou YY. Mean-square exponential input-to-state stability of stochastic quaternion-valued neural networks with time-varying delays. Adv Difference Equ. 2021;2021(362):1–15.MathSciNet
48.
go back to reference Zeng RT, Song QK. Mean-square exponential input-to-state stability for stochastic neutral-type quaternion-valued neural networks via Itô’s formula of quaternion version. Chaos Solitons Fractals. 2024;178:114341. Zeng RT, Song QK. Mean-square exponential input-to-state stability for stochastic neutral-type quaternion-valued neural networks via Itô’s formula of quaternion version. Chaos Solitons Fractals. 2024;178:114341.
Metadata
Title
Quasi-projective Synchronization Control of Delayed Stochastic Quaternion-Valued Fuzzy Cellular Neural Networks with Mismatched Parameters
Authors
Xiaofang Meng
Yu Fei
Zhouhong Li
Publication date
27-05-2024
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10299-9

Premium Partner