Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2011 | OriginalPaper | Chapter

5. Quaternion Algebra

Author: MTech, PhD, DSc, CEng, FBCS Professor John Vince

Published in: Quaternions for Computer Graphics

Publisher: Springer London

share
SHARE

Abstract

Chapter 5 defines a quaternion and its associated algebra. Definitions and examples are given for adding, subtracting and multiplying quaternions. Further sections introduce pure, real and unit quaternions and how to conjugate, normalise and invert them. The matrix form of a quaternion is described in some detail, as this is useful for implementing rotations in space. The chapter summarises key formulae and contains some useful worked examples.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference Altmann, S.L.: Rotations, Quaternions and Double Groups. Dover, New York (2005). ISBN-13: 978-0-486-44518-2 (1986) Altmann, S.L.: Rotations, Quaternions and Double Groups. Dover, New York (2005). ISBN-13: 978-0-486-44518-2 (1986)
4.
go back to reference Altmann, S.L.: Icons and Symmetries. Clarendon Press, Oxford (1992) Altmann, S.L.: Icons and Symmetries. Clarendon Press, Oxford (1992)
5.
go back to reference Altmann, S.L., Ortiz, E.L. (eds.): Mathematics and Social Utopias in France: Olinde Rodrigues and his Times. History of Mathematics, vol. 28. Am. Math. Soc., Providence (2005). ISBN-10: 0-8218-3860-1, ISBN-13: 978-0-8218-3860-0 MATH Altmann, S.L., Ortiz, E.L. (eds.): Mathematics and Social Utopias in France: Olinde Rodrigues and his Times. History of Mathematics, vol. 28. Am. Math. Soc., Providence (2005). ISBN-10: 0-8218-3860-1, ISBN-13: 978-0-8218-3860-0 MATH
9.
go back to reference Cheng, H., Gupta, K.C.: An historical note on finite rotations. Trans. ASME J. Appl. Mech. 56(1), 139–145 (1989) MathSciNetCrossRef Cheng, H., Gupta, K.C.: An historical note on finite rotations. Trans. ASME J. Appl. Mech. 56(1), 139–145 (1989) MathSciNetCrossRef
12.
go back to reference Feynman, R.P.: Symmetry and physical laws. In: Feynman Lectures in Physics, vol. 1 Feynman, R.P.: Symmetry and physical laws. In: Feynman Lectures in Physics, vol. 1
13.
go back to reference Gauss, C.F.: Mutation des Raumes. In: Carl Friedrich Gauss Werke, Achter Band, pp. 357–361. König. Gesell. Wissen. Göttingen (1900). (1819) Gauss, C.F.: Mutation des Raumes. In: Carl Friedrich Gauss Werke, Achter Band, pp. 357–361. König. Gesell. Wissen. Göttingen (1900). (1819)
14.
go back to reference Hamilton, W.R.: In: Conway, A.W., Synge, J.L. (eds.) The Mathematical Papers of Sir William Rowan Hamilton, vol. I, Geometrical Optics; Conway, A.W., McDonnell, A.J. (eds.) vol. II, Dynamics; Halberstam, H., Ingram, R.E. (eds.) vol. III, Algebra, Cambridge University Press, Cambridge (1931, 1940, 1967) (1833) Hamilton, W.R.: In: Conway, A.W., Synge, J.L. (eds.) The Mathematical Papers of Sir William Rowan Hamilton, vol. I, Geometrical Optics; Conway, A.W., McDonnell, A.J. (eds.) vol. II, Dynamics; Halberstam, H., Ingram, R.E. (eds.) vol. III, Algebra, Cambridge University Press, Cambridge (1931, 1940, 1967) (1833)
16.
go back to reference Hamilton, W.R.: On Quaternions: Or a New System of Imaginaries in Algebra. Phil. Mag. 3rd ser. 25 (1844) Hamilton, W.R.: On Quaternions: Or a New System of Imaginaries in Algebra. Phil. Mag. 3rd ser. 25 (1844)
17.
go back to reference Hamilton, W.R.: Lectures on Quaternions. Hodges & Smith, Dublin (1853) Hamilton, W.R.: Lectures on Quaternions. Hodges & Smith, Dublin (1853)
18.
go back to reference Hamilton, W.R.: Elements of Quaternions. 2nd edn. Longmans, Green & Co, London (1899–1901) (Jolly, C.J. (ed.) 2 vols.) Hamilton, W.R.: Elements of Quaternions. 2nd edn. Longmans, Green & Co, London (1899–1901) (Jolly, C.J. (ed.) 2 vols.)
21.
go back to reference Tait, P.G.: Elementary Treatise on Quaternions. Cambridge University Press, Cambridge (1867) Tait, P.G.: Elementary Treatise on Quaternions. Cambridge University Press, Cambridge (1867)
23.
go back to reference Wilson, E.B.: Vector Analysis. Yale University Press, New Haven (1901) MATH Wilson, E.B.: Vector Analysis. Yale University Press, New Haven (1901) MATH
Metadata
Title
Quaternion Algebra
Author
MTech, PhD, DSc, CEng, FBCS Professor John Vince
Copyright Year
2011
Publisher
Springer London
DOI
https://doi.org/10.1007/978-0-85729-760-0_5

Premium Partner