Skip to main content
Top
Published in:

01-06-2024

RA-Net: Region-Aware Attention Network for Skin Lesion Segmentation

Authors: Asim Naveed, Syed S. Naqvi, Shahzaib Iqbal, Imran Razzak, Haroon Ahmed Khan, Tariq M. Khan

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The precise segmentation of skin lesion in dermoscopic images is essential for the early detection of skin cancer. However, the irregular shapes of the lesions, the absence of sharp edges, the existence of artifacts like hair follicles, and marker color make this task difficult. Currently, fully connected networks (FCNs) and U-Nets are the most commonly used techniques for melanoma segmentation. However, as the depth of these neural network models increases, they become prone to various challenges. The most pertinent of these challenges are the vanishing gradient problem and the parameter redundancy problem. These can result in a decline in Jaccard index of the segmentation model. This study introduces a novel end-to-end trainable network designed for skin lesion segmentation. The proposed methodology consists of an encoder-decoder, a region-aware attention approach, and guided loss function. The trainable parameters are reduced using depth-wise separable convolution, and the attention features are refined using a guided loss, resulting in a high Jaccard index. We assessed the effectiveness of our proposed RA-Net on four frequently utilized benchmark datasets for skin lesion segmentation: ISIC 2016, ISIC 2017, ISIC 2018, and PH2. The empirical results validate that our method achieves state-of-the-art performance, as indicated by a notably high Jaccard index.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.CrossRef Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.CrossRef
4.
go back to reference Hu K, Lu J, Lee D, Xiong D, Chen Z. AS-Net: attention synergy network for skin lesion segmentation. Expert Syst Appl. 2022;201:117112.CrossRef Hu K, Lu J, Lee D, Xiong D, Chen Z. AS-Net: attention synergy network for skin lesion segmentation. Expert Syst Appl. 2022;201:117112.CrossRef
5.
go back to reference Kharazmi P, AlJasser MI, Lui H, Wang ZJ, Lee TK. Automated detection and segmentation of vascular structures of skin lesions seen in dermoscopy, with an application to basal cell carcinoma classification. IEEE J Biomed Health Inform. 2016;21(6):1675–84.CrossRef Kharazmi P, AlJasser MI, Lui H, Wang ZJ, Lee TK. Automated detection and segmentation of vascular structures of skin lesions seen in dermoscopy, with an application to basal cell carcinoma classification. IEEE J Biomed Health Inform. 2016;21(6):1675–84.CrossRef
6.
go back to reference Bi L, Fulham M, Kim J. Hyper-fusion network for semi-automatic segmentation of skin lesions. Med Image Anal. 2022;76:102334. Bi L, Fulham M, Kim J. Hyper-fusion network for semi-automatic segmentation of skin lesions. Med Image Anal. 2022;76:102334.
7.
go back to reference Yueksel ME, Borlu M. Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic. IEEE Trans Fuzzy Syst. 2009;17(4):976–82.CrossRef Yueksel ME, Borlu M. Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic. IEEE Trans Fuzzy Syst. 2009;17(4):976–82.CrossRef
8.
go back to reference Yu L, Chen H, Dou Q, Qin J, Heng P-A. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging. 2016;36(4):994–1004.CrossRef Yu L, Chen H, Dou Q, Qin J, Heng P-A. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging. 2016;36(4):994–1004.CrossRef
9.
go back to reference Cao W, Yuan G, Liu Q, Peng C, Xie J, Yang X, Ni X, Zheng J. ICL-Net: Global and local inter-pixel correlations learning network for skin lesion segmentation. IEEE J Biomed Health Inform. 2022;27(1):145–56. IEEE. Cao W, Yuan G, Liu Q, Peng C, Xie J, Yang X, Ni X, Zheng J. ICL-Net: Global and local inter-pixel correlations learning network for skin lesion segmentation. IEEE J Biomed Health Inform. 2022;27(1):145–56. IEEE.
10.
go back to reference Zhang W, Lu F, Zhao W, Hu Y, Su H, Yuan M. ACCPG-Net: a skin lesion segmentation network with adaptive channel-context-aware pyramid attention and global feature fusion. Comput Biol Med. 2023;154:106580. Elsevier. Zhang W, Lu F, Zhao W, Hu Y, Su H, Yuan M. ACCPG-Net: a skin lesion segmentation network with adaptive channel-context-aware pyramid attention and global feature fusion. Comput Biol Med. 2023;154:106580. Elsevier.
13.
go back to reference Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention. Springer; 2015. pp. 234–41. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention. Springer; 2015. pp. 234–41.
14.
go back to reference Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of deep learning and reinforcement learning to biological data. IEEE Trans Neural Netw Learn Syst. 2018;29(6):2063–79.MathSciNetCrossRef Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of deep learning and reinforcement learning to biological data. IEEE Trans Neural Netw Learn Syst. 2018;29(6):2063–79.MathSciNetCrossRef
15.
go back to reference Mahmud M, Kaiser MS, McGinnity TM, Hussain A. Deep learning in mining biological data. Cogn Comput. 2021;13:1–33.CrossRef Mahmud M, Kaiser MS, McGinnity TM, Hussain A. Deep learning in mining biological data. Cogn Comput. 2021;13:1–33.CrossRef
17.
go back to reference Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. pp. 4700–8. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. pp. 4700–8.
18.
go back to reference Emre Celebi M, Kingravi HA, Iyatomi H, Alp Aslandogan Y, Stoecker WV, Moss RH, Malters JM, Grichnik JM, Marghoob AA, Rabinovitz HS, et al. Border detection in dermoscopy images using statistical region merging. Skin Res Technol. 2008;14(3):347–53.CrossRef Emre Celebi M, Kingravi HA, Iyatomi H, Alp Aslandogan Y, Stoecker WV, Moss RH, Malters JM, Grichnik JM, Marghoob AA, Rabinovitz HS, et al. Border detection in dermoscopy images using statistical region merging. Skin Res Technol. 2008;14(3):347–53.CrossRef
19.
go back to reference Emre Celebi M, Wen Q, Hwang S, Iyatomi H, Schaefer G. Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Research and Technology. 2013;19(1):252–8.CrossRef Emre Celebi M, Wen Q, Hwang S, Iyatomi H, Schaefer G. Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Research and Technology. 2013;19(1):252–8.CrossRef
20.
go back to reference Erkol B, Moss RH, Joe Stanley R, Stoecker WV, Hvatum E. Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Research and Technology. 2005;11(1):17–26.CrossRef Erkol B, Moss RH, Joe Stanley R, Stoecker WV, Hvatum E. Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Research and Technology. 2005;11(1):17–26.CrossRef
23.
go back to reference Yuan Y, Lo Y-C. Improving dermoscopic image segmentation with enhanced convolutional-deconvolutional networks. IEEE J Biomed Health Inform. 2017;23(2):519–26.CrossRef Yuan Y, Lo Y-C. Improving dermoscopic image segmentation with enhanced convolutional-deconvolutional networks. IEEE J Biomed Health Inform. 2017;23(2):519–26.CrossRef
28.
go back to reference Abhishek K, Hamarneh G, Drew MS. Illumination-based transformations improve skin lesion segmentation in dermoscopic images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020. pp. 728–9. Abhishek K, Hamarneh G, Drew MS. Illumination-based transformations improve skin lesion segmentation in dermoscopic images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020. pp. 728–9.
30.
go back to reference Chen Y, Kalantidis Y, Li J, Yan S, Feng J. A\({}^\wedge \) 2-Nets: double attention networks. Adv Neural Inf Process Syst. 2018;31. Chen Y, Kalantidis Y, Li J, Yan S, Feng J. A\({}^\wedge \) 2-Nets: double attention networks. Adv Neural Inf Process Syst. 2018;31.
31.
go back to reference Li X, Zhong Z, Wu J, Yang Y, Lin Z, Liu H. Expectation-maximization attention networks for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019. pp. 9167–76. Li X, Zhong Z, Wu J, Yang Y, Lin Z, Liu H. Expectation-maximization attention networks for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019. pp. 9167–76.
32.
go back to reference Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Proces Syst. 2017;30. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Proces Syst. 2017;30.
33.
go back to reference Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, Lu H. Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. pp. 3146–54. Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, Lu H. Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. pp. 3146–54.
34.
go back to reference Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, Rueckert D. Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal. 2019;53:197–207.CrossRef Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, Rueckert D. Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal. 2019;53:197–207.CrossRef
35.
go back to reference Zhang S, Fu H, Yan Y, Zhang Y, Wu Q, Yang M, Tan M, Xu Y. Attention guided network for retinal image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention. Springer; 2019. pp. 797–805. Zhang S, Fu H, Yan Y, Zhang Y, Wu Q, Yang M, Tan M, Xu Y. Attention guided network for retinal image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention. Springer; 2019. pp. 797–805.
36.
go back to reference He A, Li T, Li N, Wang K, Fu H. CABNet: category attention block for imbalanced diabetic retinopathy grading. IEEE Trans Med Imaging. 2020;40(1):143–53.CrossRef He A, Li T, Li N, Wang K, Fu H. CABNet: category attention block for imbalanced diabetic retinopathy grading. IEEE Trans Med Imaging. 2020;40(1):143–53.CrossRef
42.
go back to reference Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning. PMLR; 2015. pp. 448–56. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning. PMLR; 2015. pp. 448–56.
45.
go back to reference Jadon S. A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE; 2020. pp. 1–7. Jadon S. A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE; 2020. pp. 1–7.
46.
go back to reference van Beers F, Lindström A, Okafor E, Wiering MA. Deep neural networks with intersection over union loss for binary image segmentation. In: ICPRAM. SciTePress; 2019. pp. 438–45. van Beers F, Lindström A, Okafor E, Wiering MA. Deep neural networks with intersection over union loss for binary image segmentation. In: ICPRAM. SciTePress; 2019. pp. 438–45.
47.
go back to reference Abraham N, Khan NM. A novel focal Tversky loss function with improved attention U-Net for lesion segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE; 2019. pp. 683–7. Abraham N, Khan NM. A novel focal Tversky loss function with improved attention U-Net for lesion segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE; 2019. pp. 683–7.
48.
go back to reference Gutman D, Codella NC, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A. Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv:1605.01397 [Preprint]. 2016. Available from: http://arxiv.org/abs/1605.01397. Gutman D, Codella NC, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A. Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv:​1605.​01397 [Preprint]. 2016. Available from: http://​arxiv.​org/​abs/​1605.​01397.
49.
go back to reference Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H, et al. Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE; 2018. pp. 168–72. Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H, et al. Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE; 2018. pp. 168–72.
50.
go back to reference Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data. 2018;5(1):1–9.CrossRef Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data. 2018;5(1):1–9.CrossRef
51.
go back to reference Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, Helba B, Kalloo A, Liopyris K, Marchetti M, et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). arXiv:1902.03368 [Preprint]. 2019. Available form: http://arxiv.org/abs/1902.03368. Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, Helba B, Kalloo A, Liopyris K, Marchetti M, et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). arXiv:​1902.​03368 [Preprint]. 2019. Available form: http://​arxiv.​org/​abs/​1902.​03368.
52.
go back to reference Mendonça T, Ferreira PM, Marques JS, Marques AR, Rozeira J. PH\(^2\)-a dermoscopic image database for research and benchmarking. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2013. pp. 5437–40. Mendonça T, Ferreira PM, Marques JS, Marques AR, Rozeira J. PH\(^2\)-a dermoscopic image database for research and benchmarking. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2013. pp. 5437–40.
53.
go back to reference Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision. 2017. pp. 618–26 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision. 2017. pp. 618–26
54.
go back to reference Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. pp. 4510–20. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. pp. 4510–20.
55.
go back to reference Tan M, Le Q. EfficientNetV2: smaller models and faster training. In: International Conference on Machine Learning. PMLR; 2021. pp. 10096–106. Tan M, Le Q. EfficientNetV2: smaller models and faster training. In: International Conference on Machine Learning. PMLR; 2021. pp. 10096–106.
56.
go back to reference Xu Q, Ma Z, Na H, Duan W. DCSAU-Net: a deeper and more compact split-attention U-Net for medical image segmentation. Comput Biol Med. 2023;154:106626.CrossRef Xu Q, Ma Z, Na H, Duan W. DCSAU-Net: a deeper and more compact split-attention U-Net for medical image segmentation. Comput Biol Med. 2023;154:106626.CrossRef
57.
go back to reference Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. UNet++: a nested U-Net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4. Springer; 2018. pp. 3–11. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. UNet++: a nested U-Net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4. Springer; 2018. pp. 3–11.
61.
go back to reference Maji D, Sigedar P, Singh M. Attention Res-Unet with guided decoder for semantic segmentation of brain tumors. Biomed Signal Process Control. 2022;71:103077.CrossRef Maji D, Sigedar P, Singh M. Attention Res-Unet with guided decoder for semantic segmentation of brain tumors. Biomed Signal Process Control. 2022;71:103077.CrossRef
64.
go back to reference Zuo B, Lee F, Chen Q. An efficient u-shaped network combined with edge attention module and context pyramid fusion for skin lesion segmentation. Med Biol Eng Comput. 2022;60(7):1987–2000. Springer. Zuo B, Lee F, Chen Q. An efficient u-shaped network combined with edge attention module and context pyramid fusion for skin lesion segmentation. Med Biol Eng Comput. 2022;60(7):1987–2000. Springer.
65.
go back to reference Bi L, Kim J, Ahn E, Kumar A, Feng D, Fulham M. Step-wise integration of deep class-specific learning for dermoscopic image segmentation. Pattern Recogn. 2019;85:78–89.CrossRef Bi L, Kim J, Ahn E, Kumar A, Feng D, Fulham M. Step-wise integration of deep class-specific learning for dermoscopic image segmentation. Pattern Recogn. 2019;85:78–89.CrossRef
66.
go back to reference Ji C, Deng Z, Ding Y, Zhou F, Xiao Z. RMMLP: rolling MLP and matrix decomposition for skin lesion segmentation. Biomed Signal Process Control. 2023;84:104825.CrossRef Ji C, Deng Z, Ding Y, Zhou F, Xiao Z. RMMLP: rolling MLP and matrix decomposition for skin lesion segmentation. Biomed Signal Process Control. 2023;84:104825.CrossRef
67.
go back to reference Goyal M, Oakley A, Bansal P, Dancey D, Yap MH. Skin lesion segmentation in dermoscopic images with ensemble deep learning methods. IEEE Access. 2019;8:4171–81.CrossRef Goyal M, Oakley A, Bansal P, Dancey D, Yap MH. Skin lesion segmentation in dermoscopic images with ensemble deep learning methods. IEEE Access. 2019;8:4171–81.CrossRef
68.
go back to reference Zafar K, Gilani SO, Waris A, Ahmed A, Jamil M, Khan MN, Sohail Kashif A. Skin lesion segmentation from dermoscopic images using convolutional neural network. Sensors. 2020;20(6):1601.CrossRef Zafar K, Gilani SO, Waris A, Ahmed A, Jamil M, Khan MN, Sohail Kashif A. Skin lesion segmentation from dermoscopic images using convolutional neural network. Sensors. 2020;20(6):1601.CrossRef
69.
go back to reference Wang R, Chen S, Ji C, Li Y. Cascaded context enhancement network for automatic skin lesion segmentation. Expert Syst Appl. 2022;201:117069.CrossRef Wang R, Chen S, Ji C, Li Y. Cascaded context enhancement network for automatic skin lesion segmentation. Expert Syst Appl. 2022;201:117069.CrossRef
70.
go back to reference Qin C, Zheng B, Zeng J, Chen Z, Zhai Y, Genovese A, Piuri V, Scotti F. Dynamically aggregating MLPs and CNNs for skin lesion segmentation with geometry regularization. Comput Methods Programs Biomed. 2023;238:107601.CrossRef Qin C, Zheng B, Zeng J, Chen Z, Zhai Y, Genovese A, Piuri V, Scotti F. Dynamically aggregating MLPs and CNNs for skin lesion segmentation with geometry regularization. Comput Methods Programs Biomed. 2023;238:107601.CrossRef
71.
go back to reference Jiang X, Jiang J, Wang B, Yu J, Wang J. SEACU-Net: attentive ConvLSTM U-Net with squeeze-and-excitation layer for skin lesion segmentation. Comput Methods Programs Biomed. 2022;225:107076.CrossRef Jiang X, Jiang J, Wang B, Yu J, Wang J. SEACU-Net: attentive ConvLSTM U-Net with squeeze-and-excitation layer for skin lesion segmentation. Comput Methods Programs Biomed. 2022;225:107076.CrossRef
Metadata
Title
RA-Net: Region-Aware Attention Network for Skin Lesion Segmentation
Authors
Asim Naveed
Syed S. Naqvi
Shahzaib Iqbal
Imran Razzak
Haroon Ahmed Khan
Tariq M. Khan
Publication date
01-06-2024
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10304-1

Premium Partner