Skip to main content
Top

2025 | OriginalPaper | Chapter

RadEdit: Stress-Testing Biomedical Vision Models via Diffusion Image Editing

Authors : Fernando Pérez-García, Sam Bond-Taylor, Pedro P. Sanchez, Boris van Breugel, Daniel C. Castro, Harshita Sharma, Valentina Salvatelli, Maria T. A. Wetscherek, Hannah Richardson, Matthew P. Lungren, Aditya Nori, Javier Alvarez-Valle, Ozan Oktay, Maximilian Ilse

Published in: Computer Vision – ECCV 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biomedical imaging datasets are often small and biased, meaning that real-world performance of predictive models can be substantially lower than expected from internal testing. This work proposes using generative image editing to simulate dataset shifts and diagnose failure modes of biomedical vision models; this can be used in advance of deployment to assess readiness, potentially reducing cost and patient harm. Existing editing methods can produce undesirable changes, with spurious correlations learned due to the co-occurrence of disease and treatment interventions, limiting practical applicability. To address this, we train a text-to-image diffusion model on multiple chest X-ray datasets and introduce a new editing method, RadEdit, that uses multiple image masks, if present, to constrain changes and ensure consistency in the edited images, minimising bias. We consider three types of dataset shifts: acquisition shift, manifestation shift, and population shift, and demonstrate that our approach can diagnose failures and quantify model robustness without additional data collection, complementing more qualitative tools for explainable AI.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
We provide descriptions of the medical terms used throughout the paper in Appendix A.
 
2
For LANCE, we perform the text perturbation manually.
 
3
This is a common radiological description of a ‘normal’ chest X-ray.
 
Literature
1.
go back to reference Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. Adv. Neural Inf. Process. Syst. 31 (2018) Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. Adv. Neural Inf. Process. Syst. 31 (2018)
2.
go back to reference Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of natural images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18208–18218 (2022) Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of natural images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18208–18218 (2022)
3.
go back to reference Avrahami, O., Fried, O., Lischinski, D.: Blended latent diffusion. ACM Trans. Graph. (TOG) 42(4), 1–11 (2023)CrossRef Avrahami, O., Fried, O., Lischinski, D.: Blended latent diffusion. ACM Trans. Graph. (TOG) 42(4), 1–11 (2023)CrossRef
4.
6.
go back to reference Barbano, R., et al.: Steerable conditional diffusion for out-of-distribution adaptation in imaging inverse problems. arXiv preprint arXiv:2308.14409, 2023 Barbano, R., et al.: Steerable conditional diffusion for out-of-distribution adaptation in imaging inverse problems. arXiv preprint arXiv:​2308.​14409, 2023
7.
go back to reference Castro, D.C., Walker, I., Glocker, B.: Causality matters in medical imaging. Nat. Commun. 11(1), 3673 (2020)CrossRef Castro, D.C., Walker, I., Glocker, B.: Causality matters in medical imaging. Nat. Commun. 11(1), 3673 (2020)CrossRef
8.
9.
go back to reference Chen, L.C., Kuo, P.C., Wang, R., Gichoya, J., Celi, L.A.: Chest X-ray segmentation images based on MIMIC-CXR (version 1.0.0). PhysioNet, 2022 Chen, L.C., Kuo, P.C., Wang, R., Gichoya, J., Celi, L.A.: Chest X-ray segmentation images based on MIMIC-CXR (version 1.0.0). PhysioNet, 2022
10.
go back to reference Couairon, G., Verbeek, J., Schwenk, H., Cord, M.: DiffEdit: diffusion-based semantic image editing with mask guidance (2022) Couairon, G., Verbeek, J., Schwenk, H., Cord, M.: DiffEdit: diffusion-based semantic image editing with mask guidance (2022)
12.
go back to reference Dosovitskiy, A., Tobias Springenberg, J., Brox, T.: Learning to generate chairs with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1538–1546 (2015) Dosovitskiy, A., Tobias Springenberg, J., Brox, T.: Learning to generate chairs with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1538–1546 (2015)
14.
go back to reference Fernandez, V., Sanchez, P., Pinaya, W.H.L., Jacenkow, G., Tsaftaris, S.A., Cardoso, J.: Privacy distillation: reducing re-identification risk of multimodal diffusion models. arXiv preprint arXiv:2306.01322, 2023 Fernandez, V., Sanchez, P., Pinaya, W.H.L., Jacenkow, G., Tsaftaris, S.A., Cardoso, J.: Privacy distillation: reducing re-identification risk of multimodal diffusion models. arXiv preprint arXiv:​2306.​01322, 2023
16.
go back to reference Gaggion, N., et al.: CheXmask: a large-scale dataset of anatomical segmentation masks for multi-center chest X-ray images. arXiv preprint arXiv:2307.03293, 2023 Gaggion, N., et al.: CheXmask: a large-scale dataset of anatomical segmentation masks for multi-center chest X-ray images. arXiv preprint arXiv:​2307.​03293, 2023
18.
go back to reference Gao, C., et al.: Synthetic data accelerates the development of generalizable learning-based algorithms for x-ray image analysis. Nat. Mach. Intell. 5(3), 294–308 (2023)CrossRef Gao, C., et al.: Synthetic data accelerates the development of generalizable learning-based algorithms for x-ray image analysis. Nat. Mach. Intell. 5(3), 294–308 (2023)CrossRef
19.
go back to reference Garipov, T., De Peuter, S., Yang, G., Garg, V., Kaski, S., Jaakkola, T.: Compositional sculpting of iterative generative processes. arXiv preprint arXiv:2309.16115, 2023 Garipov, T., De Peuter, S., Yang, G., Garg, V., Kaski, S., Jaakkola, T.: Compositional sculpting of iterative generative processes. arXiv preprint arXiv:​2309.​16115, 2023
20.
go back to reference Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples, 2015 Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples, 2015
21.
go back to reference Gu, Y., et al.: Biomedjourney: counterfactual biomedical image generation by instruction-learning from multimodal patient journeys. arXiv preprint arXiv:2310.10765, 2023 Gu, Y., et al.: Biomedjourney: counterfactual biomedical image generation by instruction-learning from multimodal patient journeys. arXiv preprint arXiv:​2310.​10765, 2023
22.
go back to reference Heaven, W.D.: Hundreds of AI tools have been built to catch COVID. none of them helped. MIT Technology Review. Retrieved December 2023, 2021 Heaven, W.D.: Hundreds of AI tools have been built to catch COVID. none of them helped. MIT Technology Review. Retrieved December 2023, 2021
23.
go back to reference Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: International Conference on Learning Representations, 2018 Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: International Conference on Learning Representations, 2018
24.
go back to reference Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-prompt image editing with cross-attention control. In: The Eleventh International Conference on Learning Representations, 2022 Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-prompt image editing with cross-attention control. In: The Eleventh International Conference on Learning Representations, 2022
25.
go back to reference Higgins, I., et al.: \(\beta \)-VAE: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Representations, 2016 Higgins, I., et al.: \(\beta \)-VAE: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Representations, 2016
26.
go back to reference Ho, J., Salimans, T.: Classifier-free diffusion guidance, 2022 Ho, J., Salimans, T.: Classifier-free diffusion guidance, 2022
27.
go back to reference Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models, 2020 Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models, 2020
28.
go back to reference Ho, J., Saharia, C., Chan, W., Fleet, D.J., Norouzi, M., Salimans, T.: Cascaded diffusion models for high fidelity image generation. J. Mach. Learn. Res. 23(1), 2249–2281 (2022)MathSciNet Ho, J., Saharia, C., Chan, W., Fleet, D.J., Norouzi, M., Salimans, T.: Cascaded diffusion models for high fidelity image generation. J. Mach. Learn. Res. 23(1), 2249–2281 (2022)MathSciNet
29.
go back to reference Huberman-Spiegelglas, I., Kulikov, V., Michaeli, T.: An edit friendly ddpm noise space: inversion and manipulations (2023) Huberman-Spiegelglas, I., Kulikov, V., Michaeli, T.: An edit friendly ddpm noise space: inversion and manipulations (2023)
30.
go back to reference Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison, 2019 Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison, 2019
31.
go back to reference Jaeger, S., et al.: Two public chest x-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 4(6), 475 (2014) Jaeger, S., et al.: Two public chest x-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 4(6), 475 (2014)
34.
go back to reference Jones, C., Castro, D.C., Ribeiro, F.D.S., Oktay, O., McCradden, M., Glocker, B.: No fair lunch: a causal perspective on dataset bias in machine learning for medical imaging. arXiv preprint arXiv:2307.16526, 2023 Jones, C., Castro, D.C., Ribeiro, F.D.S., Oktay, O., McCradden, M., Glocker, B.: No fair lunch: a causal perspective on dataset bias in machine learning for medical imaging. arXiv preprint arXiv:​2307.​16526, 2023
35.
go back to reference Kang, M., et al.: Scaling up gans for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10124–10134 (2023) Kang, M., et al.: Scaling up gans for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10124–10134 (2023)
36.
go back to reference Kattakinda, P., Levine, A., Feizi, S.: Invariant learning via diffusion dreamed distribution shifts. arXiv preprint arXiv:2211.10370, 2022 Kattakinda, P., Levine, A., Feizi, S.: Invariant learning via diffusion dreamed distribution shifts. arXiv preprint arXiv:​2211.​10370, 2022
37.
go back to reference Kingma, D.P., Welling, M.: Auto-encoding variational bayes, 2022 Kingma, D.P., Welling, M.: Auto-encoding variational bayes, 2022
38.
go back to reference Koh, P.W., et al.: Wilds: a benchmark of in-the-wild distribution shifts. In: International Conference on Machine Learning, pp. 5637–5664. PMLR, 2021 Koh, P.W., et al.: Wilds: a benchmark of in-the-wild distribution shifts. In: International Conference on Machine Learning, pp. 5637–5664. PMLR, 2021
39.
go back to reference IKtena, I., et al.: Generative models improve fairness of medical classifiers under distribution shifts. arXiv preprint arXiv:2304.09218, 2023 IKtena, I., et al.: Generative models improve fairness of medical classifiers under distribution shifts. arXiv preprint arXiv:​2304.​09218, 2023
40.
go back to reference Larrazabal, A.J., Nieto, N., Peterson, V., Milone, D.H., Ferrante, E.: Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc. Natl. Acad. Sci. 117(23), 12592–12594 (2020)CrossRef Larrazabal, A.J., Nieto, N., Peterson, V., Milone, D.H., Ferrante, E.: Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc. Natl. Acad. Sci. 117(23), 12592–12594 (2020)CrossRef
41.
go back to reference Lee, C.H., Yoon, H.J.: Medical big data: promise and challenges. Kidney Res. Clin. Pract. 36(1), 3 (2017) Lee, C.H., Yoon, H.J.: Medical big data: promise and challenges. Kidney Res. Clin. Pract. 36(1), 3 (2017)
42.
go back to reference Li, X., Chen, Y., Zhu, Y., Wang, S., Zhang, R., Xue, H.: ImageNet-e: benchmarking neural network robustness via attribute editing (2023) Li, X., Chen, Y., Zhu, Y., Wang, S., Zhang, R., Xue, H.: ImageNet-e: benchmarking neural network robustness via attribute editing (2023)
43.
go back to reference Liu, W., Luo, J., Yang, Y., Wang, W., Deng, J., Yu, L.: Automatic lung segmentation in chest x-ray images using improved u-net. Sci. Rep. 12(1), 8649 (2022)CrossRef Liu, W., Luo, J., Yang, Y., Wang, W., Deng, J., Yu, L.: Automatic lung segmentation in chest x-ray images using improved u-net. Sci. Rep. 12(1), 8649 (2022)CrossRef
44.
go back to reference Locatello, F., et al.: Object-centric learning with slot attention. Adv. Neural. Inf. Process. Syst. 33, 11525–11538 (2020) Locatello, F., et al.: Object-centric learning with slot attention. Adv. Neural. Inf. Process. Syst. 33, 11525–11538 (2020)
45.
go back to reference Maier-Hein, L., et al.: Metrics reloaded: recommendations for image analysis validation, 2023 Maier-Hein, L., et al.: Metrics reloaded: recommendations for image analysis validation, 2023
46.
go back to reference Meng, C., et al.: SDEdit: guided image synthesis and editing with stochastic differential equations (2022) Meng, C., et al.: SDEdit: guided image synthesis and editing with stochastic differential equations (2022)
47.
go back to reference Mokady, R., Hertz, A., Aberman, K., Pritch, Y., Cohen-Or, D.: Null-text inversion for editing real images using guided diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6038–6047 (2023) Mokady, R., Hertz, A., Aberman, K., Pritch, Y., Cohen-Or, D.: Null-text inversion for editing real images using guided diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6038–6047 (2023)
48.
49.
go back to reference Pawlowski, N., Castro, D.C., Glocker, B.: Deep structural causal models for tractable counterfactual inference. Adv. Neural. Inf. Process. Syst. 33, 857–869 (2020) Pawlowski, N., Castro, D.C., Glocker, B.: Deep structural causal models for tractable counterfactual inference. Adv. Neural. Inf. Process. Syst. 33, 857–869 (2020)
50.
go back to reference Podell, D., et al.: SDXL: Improving latent diffusion models for high-resolution image synthesis (2023) Podell, D., et al.: SDXL: Improving latent diffusion models for high-resolution image synthesis (2023)
51.
go back to reference Prabhu, V., Yenamandra, S., Chattopadhyay, P., Hoffman, J.: LANCE: stress-testing visual models by generating language-guided counterfactual images (2023) Prabhu, V., Yenamandra, S., Chattopadhyay, P., Hoffman, J.: LANCE: stress-testing visual models by generating language-guided counterfactual images (2023)
52.
go back to reference Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015 Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:​1511.​06434, 2015
53.
go back to reference Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR, 2021 Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR, 2021
54.
go back to reference Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. Adv. Neural Inf. Process. Syst. 32 (2019) Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. Adv. Neural Inf. Process. Syst. 32 (2019)
56.
go back to reference Roberts, M., et al.: Common pitfalls and recommendations for using machine learning to detect and prognosticate for covid-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3(3), 199–217 (2021)CrossRef Roberts, M., et al.: Common pitfalls and recommendations for using machine learning to detect and prognosticate for covid-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3(3), 199–217 (2021)CrossRef
57.
go back to reference Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models, 2022 Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models, 2022
60.
go back to reference Saharia, C., et al.: Palette: image-to-image diffusion models (2022) Saharia, C., et al.: Palette: image-to-image diffusion models (2022)
61.
go back to reference Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vis. 126, 973–992 (2018)CrossRef Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vis. 126, 973–992 (2018)CrossRef
62.
go back to reference Sanchez, P., Kascenas, A., Liu, X., O’Neil, A.Q., Tsaftaris, S.A.: What is healthy? Generative counterfactual diffusion for lesion localization. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds.) Deep Generative Models. DGM4MICCAI 2022. LNCS, vol. 13609, pp. 34–44. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18576-2_4 Sanchez, P., Kascenas, A., Liu, X., O’Neil, A.Q., Tsaftaris, S.A.: What is healthy? Generative counterfactual diffusion for lesion localization. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds.) Deep Generative Models. DGM4MICCAI 2022. LNCS, vol. 13609, pp. 34–44. Springer, Cham (2022). https://​doi.​org/​10.​1007/​978-3-031-18576-2_​4
63.
go back to reference Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017) Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
64.
go back to reference Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of gans for semantic face editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9243–9252 (2020) Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of gans for semantic face editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9243–9252 (2020)
65.
go back to reference Shiraishi, J., et al.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174(1), 71–74 (2000)CrossRef Shiraishi, J., et al.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174(1), 71–74 (2000)CrossRef
66.
go back to reference Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013 Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:​1312.​6034, 2013
67.
go back to reference Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265. PMLR (2015) Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265. PMLR (2015)
68.
go back to reference Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models, 2022 Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models, 2022
69.
go back to reference Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019) Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
70.
go back to reference Tumanyan, N., Geyer, M., Bagon, S., Dekel, T.: Plug-and-play diffusion features for text-driven image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1921–1930 (2023) Tumanyan, N., Geyer, M., Bagon, S., Dekel, T.: Plug-and-play diffusion features for text-driven image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1921–1930 (2023)
71.
go back to reference Upchurch, P., et al.: Deep feature interpolation for image content changes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7064–7073 (2017) Upchurch, P., et al.: Deep feature interpolation for image content changes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7064–7073 (2017)
72.
go back to reference van Breugel, B., Seedat, N., Imrie, F., van der Schaar, M.: Can you rely on your model evaluation? Improving model evaluation with synthetic test data, 2023 van Breugel, B., Seedat, N., Imrie, F., van der Schaar, M.: Can you rely on your model evaluation? Improving model evaluation with synthetic test data, 2023
73.
go back to reference Vaya, M.D.L.I., et al.: BIMCV COVID-19+: a large annotated dataset of RX and CT images from COVID-19 patients, 2020. version: 3 Vaya, M.D.L.I., et al.: BIMCV COVID-19+: a large annotated dataset of RX and CT images from COVID-19 patients, 2020. version: 3
74.
go back to reference von Borzyskowski, I., Mazumder, A., Mateen, B., Wooldridge, M.: Data science and AI in the age of COVID-19, 2021 von Borzyskowski, I., Mazumder, A., Mateen, B., Wooldridge, M.: Data science and AI in the age of COVID-19, 2021
75.
go back to reference Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3462–3471 (2017).https://doi.org/10.1109/CVPR.2017.369 Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3462–3471 (2017).https://​doi.​org/​10.​1109/​CVPR.​2017.​369
76.
go back to reference Wynants, L., et al.: Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. bmj, 369, 2020 Wynants, L., et al.: Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. bmj, 369, 2020
77.
go back to reference Zawacki, A., Wu, C., Shih, G., Elliott, J., Fomitchev, M., Hussain, M.: Siim-acr pneumothorax segmentation, Mohannad ParasLakhani Hussain (2019) Zawacki, A., Wu, C., Shih, G., Elliott, J., Fomitchev, M., Hussain, M.: Siim-acr pneumothorax segmentation, Mohannad ParasLakhani Hussain (2019)
Metadata
Title
RadEdit: Stress-Testing Biomedical Vision Models via Diffusion Image Editing
Authors
Fernando Pérez-García
Sam Bond-Taylor
Pedro P. Sanchez
Boris van Breugel
Daniel C. Castro
Harshita Sharma
Valentina Salvatelli
Maria T. A. Wetscherek
Hannah Richardson
Matthew P. Lungren
Aditya Nori
Javier Alvarez-Valle
Ozan Oktay
Maximilian Ilse
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-73254-6_21

Premium Partner