Skip to main content
Top

2024 | OriginalPaper | Chapter

Radial Laplacian on Rotation Groups

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Laplacian on the rotation group is invariant by conjugation. Hence, it maps class functions to class functions. A maximal torus consists of block diagonal matrices whose blocks are planar rotations. Class functions are determined by their values on this maximal torus. Hence, the Laplacian induces a second order operator on the maximal torus called the radial Laplacian. In this paper, we derive the expression of the radial Laplacian. Then, we use it to find the eigenvalues of the Laplacian, using that characters are class functions whose expressions are given by the Weyl character formula. Although this material is familiar to Lie-group experts, we gather it here in a synthetic and accessible way which may be useful to non experts who need to work with these concepts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Adams, J.F.: Lectures on Lie Groups. University of Chicago Press (1982) Adams, J.F.: Lectures on Lie Groups. University of Chicago Press (1982)
2.
go back to reference Ahn, H., Ha, S.-Y., Shim, W.: Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds. Kinet. Relat. Models 14(2), 323 (2021)MathSciNetCrossRef Ahn, H., Ha, S.-Y., Shim, W.: Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds. Kinet. Relat. Models 14(2), 323 (2021)MathSciNetCrossRef
3.
go back to reference Bröcker, T., Tom Dieck, T.: Representations of Compact Lie Groups. vol. 98. Springer Science & Business Media (2013) Bröcker, T., Tom Dieck, T.: Representations of Compact Lie Groups. vol. 98. Springer Science & Business Media (2013)
4.
go back to reference Bump, D.: Lie Groups, vol. 8. Springer (2004) Bump, D.: Lie Groups, vol. 8. Springer (2004)
5.
go back to reference Chevalley, C.: Theory of Lie Groups. Courier Dover Publications (2018) Chevalley, C.: Theory of Lie Groups. Courier Dover Publications (2018)
6.
7.
go back to reference Degond, P., Diez, A., Frouvelle, A., Merino-Aceituno, S.: Phase transitions and macroscopic limits in a BGK model of body-attitude coordination. J. Nonlinear Sci. 30, 2671–2736 (2020)MathSciNetCrossRef Degond, P., Diez, A., Frouvelle, A., Merino-Aceituno, S.: Phase transitions and macroscopic limits in a BGK model of body-attitude coordination. J. Nonlinear Sci. 30, 2671–2736 (2020)MathSciNetCrossRef
8.
go back to reference Degond, P., Diez, A., Walczak, A.: Topological states and continuum model for swarmalators without force reciprocity. Anal. Appl. 20, 1215–1270 (2022)MathSciNetCrossRef Degond, P., Diez, A., Walczak, A.: Topological states and continuum model for swarmalators without force reciprocity. Anal. Appl. 20, 1215–1270 (2022)MathSciNetCrossRef
10.
go back to reference Degond, P., Frouvelle, A., Merino-Aceituno, S.: A new flocking model through body attitude coordination. Math. Models Methods Appl. Sci. 27(06), 1005–1049 (2017)MathSciNetCrossRef Degond, P., Frouvelle, A., Merino-Aceituno, S.: A new flocking model through body attitude coordination. Math. Models Methods Appl. Sci. 27(06), 1005–1049 (2017)MathSciNetCrossRef
11.
go back to reference Degond, P., Frouvelle, A., Merino-Aceituno, S., Trescases, A.: Alignment of self-propelled rigid bodies: from particle systems to macroscopic equations. In: International Workshop on Stochastic Dynamics out of Equilibrium, pp. 28–66. Springer (2017) Degond, P., Frouvelle, A., Merino-Aceituno, S., Trescases, A.: Alignment of self-propelled rigid bodies: from particle systems to macroscopic equations. In: International Workshop on Stochastic Dynamics out of Equilibrium, pp. 28–66. Springer (2017)
12.
go back to reference Degond, P., Frouvelle, A., Merino-Aceituno, S., Trescases, A.: Quaternions in collective dynamics. Multiscale Model. Simul. 16(1), 28–77 (2018)MathSciNetCrossRef Degond, P., Frouvelle, A., Merino-Aceituno, S., Trescases, A.: Quaternions in collective dynamics. Multiscale Model. Simul. 16(1), 28–77 (2018)MathSciNetCrossRef
13.
go back to reference Degond, P., Motsch, S.: A macroscopic model for a system of swarming agents using curvature control. J. Stat. Phys. 143, 685–714 (2011)MathSciNetCrossRef Degond, P., Motsch, S.: A macroscopic model for a system of swarming agents using curvature control. J. Stat. Phys. 143, 685–714 (2011)MathSciNetCrossRef
14.
go back to reference Do Carmo, M.:.Riemannian Geometry. Springer (1992) Do Carmo, M.:.Riemannian Geometry. Springer (1992)
15.
go back to reference Duistermaat, J.J., Kolk, J.A.: Lie Groups. Springer Science & Business Media (2012) Duistermaat, J.J., Kolk, J.A.: Lie Groups. Springer Science & Business Media (2012)
16.
go back to reference Faraut, J.: Analysis on Lie Groups, An Introduction. Cambridge University Press (2008) Faraut, J.: Analysis on Lie Groups, An Introduction. Cambridge University Press (2008)
17.
go back to reference Fetecau, R.C., Ha, S.-Y., Park, H.: Emergent behaviors of rotation matrix flocks. SIAM J. Appl. Dyn. Syst. 21(2), 1382–1425 (2022)MathSciNetCrossRef Fetecau, R.C., Ha, S.-Y., Park, H.: Emergent behaviors of rotation matrix flocks. SIAM J. Appl. Dyn. Syst. 21(2), 1382–1425 (2022)MathSciNetCrossRef
18.
19.
go back to reference Fulton, W., Harris, J.: Representation Theory: A First Course. Springer (2013) Fulton, W., Harris, J.: Representation Theory: A First Course. Springer (2013)
20.
go back to reference Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry. Springer (1990) Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry. Springer (1990)
21.
go back to reference Golse, F., Ha, S.-Y.: A mean-field limit of the Lohe matrix model and emergent dynamics. Arch. Ration. Mech. Anal. 234(3), 1445–1491 (2019)MathSciNetCrossRef Golse, F., Ha, S.-Y.: A mean-field limit of the Lohe matrix model and emergent dynamics. Arch. Ration. Mech. Anal. 234(3), 1445–1491 (2019)MathSciNetCrossRef
22.
go back to reference Gurarie, D.: Symmetries and Laplacians: Introduction to Harmonic Analysis, Group Representations and Applications. Courier Corporation (2007) Gurarie, D.: Symmetries and Laplacians: Introduction to Harmonic Analysis, Group Representations and Applications. Courier Corporation (2007)
23.
go back to reference Ha, S.-Y., Ko, D., Ryoo, S.W.: Emergent dynamics of a generalized Lohe model on some class of Lie groups. J. Stat. Phys. 168(1), 171–207 (2017)MathSciNetCrossRef Ha, S.-Y., Ko, D., Ryoo, S.W.: Emergent dynamics of a generalized Lohe model on some class of Lie groups. J. Stat. Phys. 168(1), 171–207 (2017)MathSciNetCrossRef
24.
go back to reference Hall, B.C.: Lie Groups, Lie Algebras, and Representations. Springer (2013) Hall, B.C.: Lie Groups, Lie Algebras, and Representations. Springer (2013)
25.
go back to reference Helgason, S.: Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, vol. 83. American Mathematical Society (2022) Helgason, S.: Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, vol. 83. American Mathematical Society (2022)
26.
go back to reference Hsu, E.P.: Stochastic Analysis on Manifolds, vol. 38. American Mathematical Society (2002) Hsu, E.P.: Stochastic Analysis on Manifolds, vol. 38. American Mathematical Society (2002)
27.
go back to reference Humphreys, J.E.: Introduction to Lie Algebras And Representation Theory, vol. 9. Springer Science & Business Media (2012) Humphreys, J.E.: Introduction to Lie Algebras And Representation Theory, vol. 9. Springer Science & Business Media (2012)
28.
go back to reference Knapp, A.W.: Lie Groups Beyond an Introduction, vol. 140. Springer (1996) Knapp, A.W.: Lie Groups Beyond an Introduction, vol. 140. Springer (1996)
29.
go back to reference Sepanski, M.R.: Compact Lie Groups. Springer (2007) Sepanski, M.R.: Compact Lie Groups. Springer (2007)
30.
go back to reference Simon, B.: Representations of Finite and Compact Groups. Graduate Studies in Mathematics, vol. 10. American Mathematical Society (1996) Simon, B.: Representations of Finite and Compact Groups. Graduate Studies in Mathematics, vol. 10. American Mathematical Society (1996)
31.
go back to reference Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)MathSciNetCrossRef Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)MathSciNetCrossRef
32.
go back to reference Warner, F.W.: Foundations Of Differentiable Manifolds and Lie Groups. Springer (1983) Warner, F.W.: Foundations Of Differentiable Manifolds and Lie Groups. Springer (1983)
33.
go back to reference Weyl, H.: The Classical Groups: Their Invariants and Representations, vol. 1. Princeton University Press (1946) Weyl, H.: The Classical Groups: Their Invariants and Representations, vol. 1. Princeton University Press (1946)
Metadata
Title
Radial Laplacian on Rotation Groups
Author
Pierre Degond
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-65195-3_2

Premium Partner