2015 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
Published in:
Algorithms, Probability, Networks, and Games
One of the most intriguing discoveries made by Erdös and Rényi in the course of their investigating random graphs is the so-called phase transition phenomenona, like the sudden emergence of the giant component. Since then, this kind of phenomena have been observed in many, diverse, areas of combinatorics and discrete mathematics in general. Typically, the notion of phase transition in combinatorics is related to a sudden change in the structural properties of a combinatorial construction, e.g. a (hyper)graph, arithmetic progressions e.t.c. However, it seems that the study of phase transitions goes much further. There is an empirical evidence that certain phase transition phenomena play a prominent role in the performance of algorithms for a lot of natural computational problems. That is, phase transitions are related to the, somehow elusive, notion of computational intractability. The last fifteen-twenty years, there has been serious attempts to put this relation on a mathematically rigorous basis. Our aim is to highlight some of the most central problems that arise in this endeavor.
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1
2
3
4
5
6
7
8
9
10
As local greedy algorithms.
The interested reader can find rapid mixing bound fro the
hard-core model (weighted independent sets), too.
The paper in [
31] is for
G(
n,
p) model for
\(p=d/n\), the result for
G(
n,
m) follow by using standard arguments.
There are cases where the dynamics remains ergodic beyond non-reconstruction, e.g. hard-core model. In these cases the non-ergodicity is substituted by “low conductance”, which implies slow mixing.
Since this search usually gets stuck in a local but not a global optimum, it is customary to carry out the process several times, starting from different configurations, and save the best result.
Independent set of a graph is any subset of its vertices which do not span any edge with each other.
Somehow the problem of computing marginals turns out to be easier than sampling.
The algorithm in [
30] is for the related
G(
n,
p) where
\(p=d/n\). result for
G(
n,
m) follows by just using standard arguments.
To be more precise the colour remains asymptotically random.
This justifies the name message passing algorithm.
1.
go back to reference Achlioptas, D., Coja-Oghlan, A.: Algorithmic Barriers from Phase Transitions. In: Proceedings of 49th IEEE Symposium on Foundations of Computer Science, FOCS (2008) Achlioptas, D., Coja-Oghlan, A.: Algorithmic Barriers from Phase Transitions. In: Proceedings of 49th IEEE Symposium on Foundations of Computer Science, FOCS (2008)
2.
go back to reference Achlioptas, D., Coja-Oghlan, A., Ricci-Tersenghi, F.: On the solution-space geometry of random constraint satisfaction problems. Random Struct. Algorithms 38(3), 251–268 (2011) MathSciNetCrossRefMATH Achlioptas, D., Coja-Oghlan, A., Ricci-Tersenghi, F.: On the solution-space geometry of random constraint satisfaction problems. Random Struct. Algorithms
38(3), 251–268 (2011)
MathSciNetCrossRefMATH
3.
go back to reference Achlioptas, D., Friedgut, E.: A sharp threshold for \(k\)-colorability. Random Struct. Algorithms 14(1), 63–70 (1999) MathSciNetCrossRefMATH Achlioptas, D., Friedgut, E.: A sharp threshold for
\(k\)-colorability. Random Struct. Algorithms
14(1), 63–70 (1999)
MathSciNetCrossRefMATH
4.
go back to reference Achlioptas, D., Moore, C.: Random \(k\)-SAT: two moments suffice to cross a sharp threshold. SIAM J. Comput. 36(3), 740–762 (2006) MathSciNetCrossRefMATH Achlioptas, D., Moore, C.: Random
\(k\)-SAT: two moments suffice to cross a sharp threshold. SIAM J. Comput.
36(3), 740–762 (2006)
MathSciNetCrossRefMATH
5.
go back to reference Achlioptas, D., Naor, A.: The two possible values of the chromatic number of a random graph. Ann. Math. 162(3), 1333–1349 (2005) MathSciNetCrossRefMATH Achlioptas, D., Naor, A.: The two possible values of the chromatic number of a random graph. Ann. Math.
162(3), 1333–1349 (2005)
MathSciNetCrossRefMATH
6.
go back to reference Achlioptas, D., Peres, Y.: The threshold for random \(k\)-SAT is \(2^k \log 2 - O(k)\). J. AMS 17, 947–973 (2004) MathSciNetMATH Achlioptas, D., Peres, Y.: The threshold for random
\(k\)-SAT is
\(2^k \log 2 - O(k)\). J. AMS
17, 947–973 (2004)
MathSciNetMATH
7.
go back to reference Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random graph. In: Proceedings of 9th ACM-SIAM Symposium on Discrete Algorithms, SODA 1998 (1998) Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random graph. In: Proceedings of 9th ACM-SIAM Symposium on Discrete Algorithms, SODA 1998 (1998)
8.
go back to reference Bapst, V., Coja-Oghlan, A., Hetterich, S., Rassmann, F., Vilenchik, D.: The condensation phase transition in random graph coloring. In: proceedings of APPROX-RANDOM 2014, pp. 449–464 (2014) Bapst, V., Coja-Oghlan, A., Hetterich, S., Rassmann, F., Vilenchik, D.: The condensation phase transition in random graph coloring. In: proceedings of APPROX-RANDOM 2014, pp. 449–464 (2014)
9.
go back to reference van den Berg, J., Maes, C.: Disagreement percolation in the study of Markov fields. Ann. Probab. 22, 749–763 (1994) MathSciNetCrossRefMATH van den Berg, J., Maes, C.: Disagreement percolation in the study of Markov fields. Ann. Probab.
22, 749–763 (1994)
MathSciNetCrossRefMATH
10.
go back to reference Bhatnagar, N., Sly, A., Tetali, P.: Decay of Correlations for the Hardcore Model on the \(d\)-regular Random Graph. http://arxiv.org/abs/1405.6160 Bhatnagar, N., Sly, A., Tetali, P.: Decay of Correlations for the Hardcore Model on the
\(d\)-regular Random Graph.
http://arxiv.org/abs/1405.6160
11.
go back to reference Braunstein, A., Mézard, A., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random Struct. Algorithms 27, 201–226 (2004) MathSciNetCrossRefMATH Braunstein, A., Mézard, A., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random Struct. Algorithms
27, 201–226 (2004)
MathSciNetCrossRefMATH
12.
go back to reference Brightwell, G., Winkler, P.: A second threshold for the hard-core model on a Bethe lattice. Random Struct. Algorithms 24, 303–314 (2004) MathSciNetCrossRefMATH Brightwell, G., Winkler, P.: A second threshold for the hard-core model on a Bethe lattice. Random Struct. Algorithms
24, 303–314 (2004)
MathSciNetCrossRefMATH
13.
go back to reference Bubley, R., Dyer, M.: Path coupling: a technique for proving rapid mixing in markov chains. In: proceedings of 38th FOCS, pp 223–231 (1997) Bubley, R., Dyer, M.: Path coupling: a technique for proving rapid mixing in markov chains. In: proceedings of 38th FOCS, pp 223–231 (1997)
14.
go back to reference Coja-Oghlan, A.: A Better Algorithm for Random \(k\)-SAT. In: proceedings of ICALP (1) 2009: 292–303. SIAM J. Comput. 39(7) 2823–2864 (2010) Coja-Oghlan, A.: A Better Algorithm for Random
\(k\)-SAT. In: proceedings of ICALP (1) 2009: 292–303. SIAM J. Comput.
39(7) 2823–2864 (2010)
15.
go back to reference Coja-Oghlan, A.: The asymptotic \(k\)-SAT threshold. In: proceedings of STOC 2014: 804–813 (2014) Coja-Oghlan, A.: The asymptotic
\(k\)-SAT threshold. In: proceedings of STOC 2014: 804–813 (2014)
16.
go back to reference Coja-Oghlan, A., Efthymiou, C.: On independent sets in Random Graphs. In: Proceedings of 22nd ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp 136–144 (2011) Coja-Oghlan, A., Efthymiou, C.: On independent sets in Random Graphs. In: Proceedings of 22nd ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp 136–144 (2011)
17.
go back to reference Coja-Oghlan, A., Efthymiou, C., Hetterich, S.: On the chromatic number of random regular graphs. http://arxiv.org/abs/1308.4287 Coja-Oghlan, A., Efthymiou, C., Hetterich, S.: On the chromatic number of random regular graphs.
http://arxiv.org/abs/1308.4287
18.
go back to reference Coja-Oghlan, A., Efthymiou, C., Jaafari, N.: Local convergence of random graph colorings. http://arxiv.org/abs/1501.06301 Coja-Oghlan, A., Efthymiou, C., Jaafari, N.: Local convergence of random graph colorings.
http://arxiv.org/abs/1501.06301
19.
go back to reference Coja-Oghlan, A., Panagiotou, K.: Going after the k-SAT threshold. In: procedings of STOC 2013: 705–714 (2013) Coja-Oghlan, A., Panagiotou, K.: Going after the k-SAT threshold. In: procedings of STOC 2013: 705–714 (2013)
20.
go back to reference Coja-Oghlan, A., Panagiotou, K.: Catching the k-NAESAT threshold. In: proceedings of STOC 2012: 899–908 (2012) Coja-Oghlan, A., Panagiotou, K.: Catching the k-NAESAT threshold. In: proceedings of STOC 2012: 899–908 (2012)
21.
go back to reference Coja-Oghlan, A., Vilenchik, D.: Chasing the k-colorability threshold. In: Proceedings of 54th IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp 380–389 (2013) Coja-Oghlan, A., Vilenchik, D.: Chasing the k-colorability threshold. In: Proceedings of 54th IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp 380–389 (2013)
22.
go back to reference Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science, pp. 620–627 (1992) Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science, pp. 620–627 (1992)
23.
go back to reference Dani, V., Moore, C.: Independent sets in random graphs from the weighted second moment method. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) RANDOM 2011 and APPROX 2011. LNCS, vol. 6845, pp. 472–482. Springer, Heidelberg (2011) CrossRef Dani, V., Moore, C.: Independent sets in random graphs from the weighted second moment method. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) RANDOM 2011 and APPROX 2011. LNCS, vol. 6845, pp. 472–482. Springer, Heidelberg (2011)
CrossRef
24.
go back to reference Ding, J., Sly, A., Sun, N.: Maximum independent sets on random regular graphs. http://arxiv.org/abs/1310.4787 Ding, J., Sly, A., Sun, N.: Maximum independent sets on random regular graphs.
http://arxiv.org/abs/1310.4787
25.
go back to reference Ding, J., Sly, A., Sun, N.: Satisfiability threshold for random regular NAE-SAT. In: proceendings of STOC 2014: 814–822 (2014) Ding, J., Sly, A., Sun, N.: Satisfiability threshold for random regular NAE-SAT. In: proceendings of STOC 2014: 814–822 (2014)
26.
go back to reference Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large \(k\). To appear in STOC 2015 (2015) Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large
\(k\). To appear in STOC 2015 (2015)
27.
go back to reference Dyer, M., Flaxman, A., Frieze, A.M., Vigoda, E.: Random colouring sparse random graphs with fewer colours than the maximum degree. Random Struct. Algorithms 29, 450–465 (2006) CrossRefMATH Dyer, M., Flaxman, A., Frieze, A.M., Vigoda, E.: Random colouring sparse random graphs with fewer colours than the maximum degree. Random Struct. Algorithms
29, 450–465 (2006)
CrossRefMATH
28.
go back to reference Dyer, M.E., Frieze, A.M.: The solution of some random np-hard problems in polynomial expected time. J. Algorithms 10(4), 451–489 (1989) MathSciNetCrossRefMATH Dyer, M.E., Frieze, A.M.: The solution of some random np-hard problems in polynomial expected time. J. Algorithms
10(4), 451–489 (1989)
MathSciNetCrossRefMATH
29.
go back to reference Dyer, M., Frieze, A.M., Hayes, A., Vigoda, E.: Randomly colouring constant degree graphs. In proceedings of 45th FOCS, pp 582–589 (2004) Dyer, M., Frieze, A.M., Hayes, A., Vigoda, E.: Randomly colouring constant degree graphs. In proceedings of 45th FOCS, pp 582–589 (2004)
30.
go back to reference Efthymiou, C.: A simple algorithm for random colouring \(G(n, d/n)\) using \((2 + \epsilon )d\) colours. In: Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, SODA 2012 (2012) Efthymiou, C.: A simple algorithm for random colouring
\(G(n, d/n)\) using
\((2 + \epsilon )d\) colours. In: Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, SODA 2012 (2012)
31.
go back to reference Efthymiou, C.: MCMC sampling colourings and independent sets of G(n, d/n) near the uniqueness threshold. In: proceedings of Symposium on Discrete Algorithms, SODA (2014) Efthymiou, C.: MCMC sampling colourings and independent sets of G(n, d/n) near the uniqueness threshold. In: proceedings of Symposium on Discrete Algorithms, SODA (2014)
32.
go back to reference Efthymiou, C.: Switching colouring of G( n, d/ n) for sampling up to gibbs uniqueness threshold. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 371–381. Springer, Heidelberg (2014) Efthymiou, C.: Switching colouring of
G(
n,
d/
n) for sampling up to gibbs uniqueness threshold. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 371–381. Springer, Heidelberg (2014)
33.
go back to reference Efthymiou, C.: Reconstruction/Non-reconstruction Thresholds for Colourings of General Galton-Watson Trees. CoRR abs/1406.3617 (2014) Efthymiou, C.: Reconstruction/Non-reconstruction Thresholds for Colourings of General Galton-Watson Trees. CoRR abs/1406.3617 (2014)
34.
go back to reference Freeman, W.T., Paztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comput. Vis. 40, 25–47 (2000) CrossRefMATH Freeman, W.T., Paztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comput. Vis.
40, 25–47 (2000)
CrossRefMATH
35.
go back to reference Friedgut, E.: Necessary and sufficient conditions for sharp thresholds of graph properties, and the k-SAT problem. J. Amer. Math. Soc. 12, 1017–1054 (1999) MathSciNetCrossRefMATH Friedgut, E.: Necessary and sufficient conditions for sharp thresholds of graph properties, and the k-SAT problem. J. Amer. Math. Soc.
12, 1017–1054 (1999)
MathSciNetCrossRefMATH
36.
go back to reference Frieze, A.M.: On the independence number of random graphs. Discrete Math. 81(183), 171–175 (1990) MathSciNetCrossRefMATH Frieze, A.M.: On the independence number of random graphs. Discrete Math.
81(183), 171–175 (1990)
MathSciNetCrossRefMATH
37.
go back to reference Frieze, A.M., Vera, J.: On randomly colouring locally sparse graphs. Discrete Math. & Theor. Comput. Sci. 8(1), 121–128 (2006) MathSciNetMATH Frieze, A.M., Vera, J.: On randomly colouring locally sparse graphs. Discrete Math. & Theor. Comput. Sci.
8(1), 121–128 (2006)
MathSciNetMATH
38.
go back to reference Georgii, H.O.: Gibbs Measures and Phase Transitions, de Gruyter Stud. Math. 9, de Gruyter, Berlin (1988) Georgii, H.O.: Gibbs Measures and Phase Transitions, de Gruyter Stud. Math. 9, de Gruyter, Berlin (1988)
39.
go back to reference Goldberg, L.A., Martin, R.A., Paterson, M.: Strong spatial mixing with fewer colors for lattice graphs. SIAM J. Comput. 35(2), 486–517 (2005) MathSciNetCrossRefMATH Goldberg, L.A., Martin, R.A., Paterson, M.: Strong spatial mixing with fewer colors for lattice graphs. SIAM J. Comput.
35(2), 486–517 (2005)
MathSciNetCrossRefMATH
40.
go back to reference Grimmett, G.R., McDiarmid, C.J.H.: On colouring random graphs. Math. Proc. Camb. Phil. Soc. 77(02), 313–332 (1975) MathSciNetCrossRefMATH Grimmett, G.R., McDiarmid, C.J.H.: On colouring random graphs. Math. Proc. Camb. Phil. Soc.
77(02), 313–332 (1975)
MathSciNetCrossRefMATH
41.
go back to reference Hayes, T., Vera, J., Vigoda, E.: Randomly coloring planar graphs with fewer colors than the maximum degree. In: proceedings of 39th STOC, pp 450–458 (2007) Hayes, T., Vera, J., Vigoda, E.: Randomly coloring planar graphs with fewer colors than the maximum degree. In: proceedings of 39th STOC, pp 450–458 (2007)
42.
go back to reference Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18(6), 1138–1162 (1970) MathSciNetCrossRefMATH Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res.
18(6), 1138–1162 (1970)
MathSciNetCrossRefMATH
43.
go back to reference Jerrum, M.R.: Large cliques elude the Metropolis process. Random Struct. Algorithms 3, 347–359 (1992) MathSciNetCrossRefMATH Jerrum, M.R.: Large cliques elude the Metropolis process. Random Struct. Algorithms
3, 347–359 (1992)
MathSciNetCrossRefMATH
44.
go back to reference Jerrum, M.R., Sinclair, A.: The Markov chain Monte Carlo method: an approach to approximate counting and integration. In: Approximation Algorithms for NP-hard Problems, (Dorit Hochbaum, ed.), PWS (1996) Jerrum, M.R., Sinclair, A.: The Markov chain Monte Carlo method: an approach to approximate counting and integration. In: Approximation Algorithms for NP-hard Problems, (Dorit Hochbaum, ed.), PWS (1996)
45.
go back to reference Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries. J. ACM 51(4), 671–697 (2004) MathSciNetCrossRefMATH Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries. J. ACM
51(4), 671–697 (2004)
MathSciNetCrossRefMATH
46.
go back to reference Karp, R., Sipser, M.: Maximum matchings in sparse random graphs. In: proceedings of FOCS 1981, pp. 364 375 (1981) Karp, R., Sipser, M.: Maximum matchings in sparse random graphs. In: proceedings of FOCS 1981, pp. 364 375 (1981)
47.
go back to reference Kelly, F.P.: Loss networks. Ann. Appl. Probab. 1(3), 319–378 (1991) MathSciNetCrossRefMATH Kelly, F.P.: Loss networks. Ann. Appl. Probab.
1(3), 319–378 (1991)
MathSciNetCrossRefMATH
48.
go back to reference Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimisation by simulated annealing. Science 220, 671–680 (1983) MathSciNetCrossRefMATH Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimisation by simulated annealing. Science
220, 671–680 (1983)
MathSciNetCrossRefMATH
49.
go back to reference Kirousis, L.M., Kranakis, E., Krizanc, D., Stamatiou, Y.C.: Approximating the unsatisfiability threshold of random formulas. Random Struct. Algor. 12(3), 253–269 (1998) MathSciNetCrossRefMATH Kirousis, L.M., Kranakis, E., Krizanc, D., Stamatiou, Y.C.: Approximating the unsatisfiability threshold of random formulas. Random Struct. Algor.
12(3), 253–269 (1998)
MathSciNetCrossRefMATH
50.
go back to reference Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semerjianc, G., Zdeborova, L.: Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci. 104, 10318–10323 (2007) MathSciNetCrossRefMATH Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semerjianc, G., Zdeborova, L.: Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci.
104, 10318–10323 (2007)
MathSciNetCrossRefMATH
51.
go back to reference Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47, 498519 (2001) MathSciNetCrossRefMATH Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory
47, 498519 (2001)
MathSciNetCrossRefMATH
52.
go back to reference Levin, D., Peres, Y., Wilmer, E.: Markov Chains and Mixing Times. American Mathematical Society (2008) Levin, D., Peres, Y., Wilmer, E.: Markov Chains and Mixing Times. American Mathematical Society (2008)
53.
go back to reference Lovász, L., Vempala, S.: Simulated annealing in convex bodies and an \(O*(n^4)\) volume algorithm. In: Proceedings of the 44th IEEE Foundations of Computer Science (FOCS 2003) (2003). Also in JCSS (FOCS 2003 special issue) Lovász, L., Vempala, S.: Simulated annealing in convex bodies and an
\(O*(n^4)\) volume algorithm. In: Proceedings of the 44th IEEE Foundations of Computer Science (FOCS 2003) (2003). Also in JCSS (FOCS 2003 special issue)
54.
go back to reference Lucier, B., Molloy, M., Peres, Y.: The Glauber Dynamics for Colourings of Bounded Degree Trees. In: proceedings of RANDOM 2009, pp 631–645 (2009) Lucier, B., Molloy, M., Peres, Y.: The Glauber Dynamics for Colourings of Bounded Degree Trees. In: proceedings of RANDOM 2009, pp 631–645 (2009)
55.
go back to reference Martinelli, F., Sinclair, A., Weitz, D.: Fast mixing for independent sets, colorings and other models on trees. In: proceedings of 15th SODA, pp 456–465 (2004) Martinelli, F., Sinclair, A., Weitz, D.: Fast mixing for independent sets, colorings and other models on trees. In: proceedings of 15th SODA, pp 456–465 (2004)
56.
go back to reference Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953) CrossRef Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys.
21, 1087–1092 (1953)
CrossRef
57.
go back to reference Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability problems. Science 297(5582), 812–815 (2002) CrossRef Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability problems. Science
297(5582), 812–815 (2002)
CrossRef
58.
go back to reference Molloy, M.: The Glauber dynamics on the colourings of a graph with large girth and maximum degree. SIAM J. Comput. 33, 721–737 (2004) MathSciNetCrossRefMATH Molloy, M.: The Glauber dynamics on the colourings of a graph with large girth and maximum degree. SIAM J. Comput.
33, 721–737 (2004)
MathSciNetCrossRefMATH
59.
go back to reference Montanari, A., Restrepo, R., Tetali, P.: Reconstruction and clustering in random constraint satisfaction problems. SIAM J. Discrete Math. 25(2), 771–808 (2011) MathSciNetCrossRefMATH Montanari, A., Restrepo, R., Tetali, P.: Reconstruction and clustering in random constraint satisfaction problems. SIAM J. Discrete Math.
25(2), 771–808 (2011)
MathSciNetCrossRefMATH
60.
go back to reference Montanari, A., Shah, D.: Counting good truth assignments of random \(k\)-SAT formulae. In: proceedings of the 18th Annual ACM-SIAM, SODA 2007, pp 1255–1264 (2007) Montanari, A., Shah, D.: Counting good truth assignments of random
\(k\)-SAT formulae. In: proceedings of the 18th Annual ACM-SIAM, SODA 2007, pp 1255–1264 (2007)
61.
go back to reference Mossel, E., Sly, A.: Gibbs rapidly samples colorings of \(G_{n, d/n}\). J. Probab. Theory Relat. fields 148, 1–2 (2010) CrossRefMATH Mossel, E., Sly, A.: Gibbs rapidly samples colorings of
\(G_{n, d/n}\). J. Probab. Theory Relat. fields
148, 1–2 (2010)
CrossRefMATH
62.
go back to reference Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan-Kaufmann, Palo Alto (1988) MATH Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan-Kaufmann, Palo Alto (1988)
MATH
63.
go back to reference Restrepo, R., Stefankovic, D., Vera, J.C., Vigoda, E., Yang, L.: Phase transition for glauber dynamics for independent sets on regular trees. In: proceedings SODA 2011, pp 945–956 (2011) Restrepo, R., Stefankovic, D., Vera, J.C., Vigoda, E., Yang, L.: Phase transition for glauber dynamics for independent sets on regular trees. In: proceedings SODA 2011, pp 945–956 (2011)
64.
go back to reference Richardson, T., Urbanke, R.: The capacity of low-density parity check codes under message passing deconding. IEEE Trans. Inf. Theory 47, 599–618 (2001) CrossRefMATH Richardson, T., Urbanke, R.: The capacity of low-density parity check codes under message passing deconding. IEEE Trans. Inf. Theory
47, 599–618 (2001)
CrossRefMATH
65.
go back to reference Schöning, U.: A probabilistic algorithm for \(k\)-SAT and constraint satisfaction problems. In: proceedings of Symposium on Foundations of Computer Science, FOCS 1999, pp 410–419 (1999) Schöning, U.: A probabilistic algorithm for
\(k\)-SAT and constraint satisfaction problems. In: proceedings of Symposium on Foundations of Computer Science, FOCS 1999, pp 410–419 (1999)
66.
go back to reference Tetali, P., Vera, J.C., Vigoda, E., Yang, L.: Phase transition for the mixing time of the glauber dynamics for coloring regular trees. In: proceedings of SODA 2010, pp 1646–1656 (2010) Tetali, P., Vera, J.C., Vigoda, E., Yang, L.: Phase transition for the mixing time of the glauber dynamics for coloring regular trees. In: proceedings of SODA 2010, pp 1646–1656 (2010)
67.
go back to reference Vigoda, E.: Improved bounds for sampling colorings. J. Math. Phys. 41(3), 1555–1569 (2000). A preliminary version appears in FOCS 1999 MathSciNetCrossRefMATH Vigoda, E.: Improved bounds for sampling colorings. J. Math. Phys.
41(3), 1555–1569 (2000). A preliminary version appears in FOCS 1999
MathSciNetCrossRefMATH
- Title
- Random Instances of Problems in NP – Algorithms and Statistical Physics
- DOI
- https://doi.org/10.1007/978-3-319-24024-4_13
- Author:
-
Charilaos Efthymiou
- Publisher
- Springer International Publishing
- Sequence number
- 13