Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

10-11-2017 | Doctoral and Postdoctoral Dissertations | Issue 1/2018

KI - Künstliche Intelligenz 1/2018

Randomized Primitives for Big Data Processing

Journal:
KI - Künstliche Intelligenz > Issue 1/2018
Author:
Morten Stöckel
Important notes
This work is supported by the Danish National Research Foundation under the Sapere Aude program.

Abstract

A basic question on two pieces of data is: “What is the similarity of the data?” In this extended abstract we give an overview of new developments in randomized algorithms and data structures that relate to this question. In particular we provide new state of the art methods in three particular settings, that all relate to the computation of intersection sizes:
1.
We give a new space-efficient summary data structure for answering set intersection size queries. The new summaries are based on one-permutation min-wise hashing, and we provide a lower bound that nearly matches our new upper bound.
 
2.
For sparse matrix multiplication, we give new tight bounds in the I/O model, settling the I/O complexity a natural parameterization of the problem—namely where the complexity depends on the input sparsity N, the output sparsity Z and the parameters of the I/O model. In the RAM model we give a new algorithm that exploits output sparsity and which beats previous known results for most of the parameter space.
 
3.
We give a new I/O efficient algorithm to compute the similarity join between two sets: two elements are members of this join if they are close according to a specified metric. Our new algorithm is based on locality-sensitive hashing and strictly improves on previous work.
 

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

KI - Künstliche Intelligenz

The Scientific journal "KI – Künstliche Intelligenz" is the official journal of the division for artificial intelligence within the "Gesellschaft für Informatik e.V." (GI) – the German Informatics Society - with constributions from troughout the field of artificial intelligence.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Show more products
Literature
About this article

Other articles of this Issue 1/2018

KI - Künstliche Intelligenz 1/2018 Go to the issue

Community

News

Editorial

Editorial

Premium Partner

    Image Credits