Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 11/2022

10-05-2022 | Technical Article

Rapid Strengthening of Interstitial Free Steel Using Amorphous FeC Thin Films and Induction Heating

Authors: Elisa Cantergiani, Xavier Sauvage, Colin P. Scott, Arnaud Weck

Published in: Journal of Materials Engineering and Performance | Issue 11/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new process to rapidly obtain high-strength interstitial free (IF) steel was investigated. Thin sheets of IF steel were coated on one or both sides with an amorphous FeC film and subjected to a two-step induction heating cycle (1100 °C followed by an isothermal hold at 780 °C for 2 or 4 min) and a rapid quench in water. Tensile mechanical properties were measured, and a yield stress of 374 MPa and an ultimate tensile strength of 448 MPa were achieved after 2 min of induction heating. After 4 min of induction heating, the yield stress and the ultimate tensile strength drop at 206 and 320 MPa, respectively. During tensile testing, the specimens induction heated for 2 min show Lüdering, which is suppressed when the induction heating is extended to 4 min. Vickers microhardness measurements through thickness confirm that higher mechanical properties are obtained after 2 min of induction heating. Transmission electron microscopy reveals that strengthening results from dislocations, carbon in solid solution, and the precipitation of nanosized TiC particles. A fine microstructure with an average grain size of 15 μm is preserved after the induction heat treatment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Y. Weng, H. Dong, Gan Y, Advanced Steels: The Recent Scenario in Steel Science and Technology, Springer-Verlag Berlin Heidelberg—Metallurgical Industry Press, (2011) Y. Weng, H. Dong, Gan Y, Advanced Steels: The Recent Scenario in Steel Science and Technology, Springer-Verlag Berlin Heidelberg—Metallurgical Industry Press, (2011)
2.
go back to reference L.J. Baker, S.R. Daniel, J.D. Parker, Metallurgy and Processing of Ultralow Carbon Bake Hardening Steels, Mater. Sci. Technol., 2002, 18(4), p 355–368. CrossRef L.J. Baker, S.R. Daniel, J.D. Parker, Metallurgy and Processing of Ultralow Carbon Bake Hardening Steels, Mater. Sci. Technol., 2002, 18(4), p 355–368. CrossRef
3.
go back to reference Y. Tanaka, T. Urabe, Y. Nagataki, A New Type of High Strength Steel for Exposed Panels: High-Strength Steel with Excellent Formability, Superior Surface Precision after Press Forming, and Uniform Surface Appearance, JFE Tech. Rep., 2004, 4(4), p 17–24. Y. Tanaka, T. Urabe, Y. Nagataki, A New Type of High Strength Steel for Exposed Panels: High-Strength Steel with Excellent Formability, Superior Surface Precision after Press Forming, and Uniform Surface Appearance, JFE Tech. Rep., 2004, 4(4), p 17–24.
4.
go back to reference A. Itami, K. Ushioda, N. Kimura, H. Asano, Y. Kimura, K. Koyama, Development of New Formable Cold-Rolled Sheet Steels for Automobile Body Panels, Nippon Steel Technical Report, (1995), pp. 26–32 A. Itami, K. Ushioda, N. Kimura, H. Asano, Y. Kimura, K. Koyama, Development of New Formable Cold-Rolled Sheet Steels for Automobile Body Panels, Nippon Steel Technical Report, (1995), pp. 26–32
6.
go back to reference D. Krizan, B.C. De Cooman, Mechanical Properties of TRIP Steel Microalloyed with Ti, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, 45(8), p 3481–3492. CrossRef D. Krizan, B.C. De Cooman, Mechanical Properties of TRIP Steel Microalloyed with Ti, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, 45(8), p 3481–3492. CrossRef
7.
go back to reference R. Rana, W. Bleck, S.B. Singh, O.N. Mohanty, Development of High Strength Interstitial Free Steel by Copper Precipitation Hardening, Mater. Lett., 2007, 61(14–15), p 2919–2922. CrossRef R. Rana, W. Bleck, S.B. Singh, O.N. Mohanty, Development of High Strength Interstitial Free Steel by Copper Precipitation Hardening, Mater. Lett., 2007, 61(14–15), p 2919–2922. CrossRef
8.
go back to reference Y.Z. Shen, K.H. Oh, D.N. Lee, Nitrogen Strengthening of Interstitial-Free Steel by Nitriding in Potassium Nitrate Salt Bath, Mater. Sci. Eng. A, 2006, 434(1–2), p 314–318. CrossRef Y.Z. Shen, K.H. Oh, D.N. Lee, Nitrogen Strengthening of Interstitial-Free Steel by Nitriding in Potassium Nitrate Salt Bath, Mater. Sci. Eng. A, 2006, 434(1–2), p 314–318. CrossRef
9.
go back to reference T. Gladman, The Physical Metallurgy of Microalloyed Steels, Maney for the Institute of Materials, (2002) T. Gladman, The Physical Metallurgy of Microalloyed Steels, Maney for the Institute of Materials, (2002)
10.
go back to reference D.S. Mersagh, M. Sabzi, Deposition of Ceramic Nanocomposite Coatings by Electroplating Process: A Review of Layer-Deposition Mechanisms and Effective Parameters on the Formation of the Coating, Ceram. Int., 2019, 45(17), p 21835–21842. CrossRef D.S. Mersagh, M. Sabzi, Deposition of Ceramic Nanocomposite Coatings by Electroplating Process: A Review of Layer-Deposition Mechanisms and Effective Parameters on the Formation of the Coating, Ceram. Int., 2019, 45(17), p 21835–21842. CrossRef
11.
go back to reference M. Sabzi, S. Mersagh Dezfuli, Deposition of Al2O3 Ceramic Film on Copper-Based Heterostructured Coatings by Aluminizing Process: Study of the Electrochemical Responses and Corrosion Mechanism of the Coating, Int. J. Appl. Ceram. Technol., 2019, 16(1), p 195–210. CrossRef M. Sabzi, S. Mersagh Dezfuli, Deposition of Al2O3 Ceramic Film on Copper-Based Heterostructured Coatings by Aluminizing Process: Study of the Electrochemical Responses and Corrosion Mechanism of the Coating, Int. J. Appl. Ceram. Technol., 2019, 16(1), p 195–210. CrossRef
12.
go back to reference S.H. Mousavi Anijdan, M. Sabzi, M. Asadian and H.R. Jafarian, Effect of Sub-Layer Temperature during HFCVD Process on Morphology and Corrosion Behavior of Tungsten Carbide Coating, Int. J. Appl. Ceram. Technol., 2019, 16(1), p 243–253. CrossRef S.H. Mousavi Anijdan, M. Sabzi, M. Asadian and H.R. Jafarian, Effect of Sub-Layer Temperature during HFCVD Process on Morphology and Corrosion Behavior of Tungsten Carbide Coating, Int. J. Appl. Ceram. Technol., 2019, 16(1), p 243–253. CrossRef
16.
go back to reference B. Navinšek, P. Panjan and I. Milošev, PVD Coatings as an Environmentally Clean Alternative to Electroplating and Electroless Processes, Surf. Coat. Technol., 1999, 116–119, p 476–487. CrossRef B. Navinšek, P. Panjan and I. Milošev, PVD Coatings as an Environmentally Clean Alternative to Electroplating and Electroless Processes, Surf. Coat. Technol., 1999, 116–119, p 476–487. CrossRef
17.
go back to reference . V. Rudnev, D. Loveless, and R.L. Cook, Handbook of Induction Heating, CRC Press, Taylor & Francis Group, (2017) . V. Rudnev, D. Loveless, and R.L. Cook, Handbook of Induction Heating, CRC Press, Taylor & Francis Group, (2017)
20.
go back to reference E. Cantergiani, A. Fillon, B. Lawrence, X. Sauvage, M. Perez, C.P. Scott and A. Weck, Tailoring the Mechanical Properties of Steel Sheets Using FeC Films and Diffusion Annealing, Mater. Sci. Eng. A, 2016, 657, p 291–298. CrossRef E. Cantergiani, A. Fillon, B. Lawrence, X. Sauvage, M. Perez, C.P. Scott and A. Weck, Tailoring the Mechanical Properties of Steel Sheets Using FeC Films and Diffusion Annealing, Mater. Sci. Eng. A, 2016, 657, p 291–298. CrossRef
21.
go back to reference A. Fillon, X. Sauvage, B. Lawrence, C. Sinclair, M. Perez, A. Weck, E. Cantergiani, T. Epicier and C.P. Scott, On the Direct Nucleation and Growth of Ferrite and Cementite without Austenite, Scr. Mater., 2015, 95(1), p 35–38. CrossRef A. Fillon, X. Sauvage, B. Lawrence, C. Sinclair, M. Perez, A. Weck, E. Cantergiani, T. Epicier and C.P. Scott, On the Direct Nucleation and Growth of Ferrite and Cementite without Austenite, Scr. Mater., 2015, 95(1), p 35–38. CrossRef
22.
go back to reference D. Wohlfahrt and R. Jürgens, Information Technology and Electrical Engineering: Devices and Systems, Materials and Technologies for the Future, In: 51st Internationales Wissenschaftliches Kolloquium, (Technische Universität Ilmenau), (2006). D. Wohlfahrt and R. Jürgens, Information Technology and Electrical Engineering: Devices and Systems, Materials and Technologies for the Future, In: 51st Internationales Wissenschaftliches Kolloquium, (Technische Universität Ilmenau), (2006).
23.
go back to reference L. Weiner, P. Chiotti, and H.A. Wilhelm, Temperature Dependence of Electrical Resistivity of Metals. J. Phys. Soc. Japan (1952) L. Weiner, P. Chiotti, and H.A. Wilhelm, Temperature Dependence of Electrical Resistivity of Metals. J. Phys. Soc. Japan (1952)
24.
go back to reference N. Abe and T. Suzuki, Thermoelectric Power Versus Electrical Conductivity Plot for Quench-Ageing of Low-Carbon Aluminium-Killed Steel, Trans. Iron Steel Inst Japan, 1980, 20(10), p 690–695. CrossRef N. Abe and T. Suzuki, Thermoelectric Power Versus Electrical Conductivity Plot for Quench-Ageing of Low-Carbon Aluminium-Killed Steel, Trans. Iron Steel Inst Japan, 1980, 20(10), p 690–695. CrossRef
25.
go back to reference E. Bauer-Grosse, Thermal Stability and Crystallization Studies of Amorphous TM-C Films, Thin Solid Films, 2004, 447–448(03), p 311–315. CrossRef E. Bauer-Grosse, Thermal Stability and Crystallization Studies of Amorphous TM-C Films, Thin Solid Films, 2004, 447–448(03), p 311–315. CrossRef
26.
go back to reference E. Bauer-Grosse and G. LeCaer, Crystallisation of Amorphous Fe1-XCx Alloys (0.30 < x < 0.32) and Chemical Twinning, J. Phys. F Met. Phys., 1986, 16, p 399–406. CrossRef E. Bauer-Grosse and G. LeCaer, Crystallisation of Amorphous Fe1-XCx Alloys (0.30 < x < 0.32) and Chemical Twinning, J. Phys. F Met. Phys., 1986, 16, p 399–406. CrossRef
28.
go back to reference H. Okamoto, The C-Fe (Carbon-Iron) System, J. Phase Equilibria, 1992, 13(5), p 543–565. CrossRef H. Okamoto, The C-Fe (Carbon-Iron) System, J. Phase Equilibria, 1992, 13(5), p 543–565. CrossRef
29.
go back to reference O.D. Sherby, J. Wadsworth, D.R. Lesuer and C.K. Syn, Revisiting the Structure of Martensite in Iron-Carbon Steels, Mater. Trans., 2008, 49(9), p 2016–2027. CrossRef O.D. Sherby, J. Wadsworth, D.R. Lesuer and C.K. Syn, Revisiting the Structure of Martensite in Iron-Carbon Steels, Mater. Trans., 2008, 49(9), p 2016–2027. CrossRef
30.
go back to reference Y. Zhang, C. He, X. Zhao, L. Zuo, C. Esling and J. He, New Microstructural Features Occurring during Transformation from Austenite to Ferrite under the Kinetic Influence of Magnetic Field in a Medium Carbon Steel, J. Magn. Magn. Mater., 2004, 284(1–3), p 287–293. CrossRef Y. Zhang, C. He, X. Zhao, L. Zuo, C. Esling and J. He, New Microstructural Features Occurring during Transformation from Austenite to Ferrite under the Kinetic Influence of Magnetic Field in a Medium Carbon Steel, J. Magn. Magn. Mater., 2004, 284(1–3), p 287–293. CrossRef
31.
go back to reference M. Shimotomai, K. Maruta, K. Mine and M. Matsui, Formation of Aligned Two-Phase Microstructures by Applying a Magnetic Field during the Austenite to Ferrite Transformation in Steels, Acta Mater., 2003, 51(10), p 2921–2932. CrossRef M. Shimotomai, K. Maruta, K. Mine and M. Matsui, Formation of Aligned Two-Phase Microstructures by Applying a Magnetic Field during the Austenite to Ferrite Transformation in Steels, Acta Mater., 2003, 51(10), p 2921–2932. CrossRef
32.
go back to reference M. Shimotomai, K. Maruta, Aligned Two-Phase Structures in Fe-C Alloys, Scripta Mater., 2000, 42(5), p 499–503. CrossRef M. Shimotomai, K. Maruta, Aligned Two-Phase Structures in Fe-C Alloys, Scripta Mater., 2000, 42(5), p 499–503. CrossRef
39.
go back to reference M. Hua, C.I. Garcia, A.J. Deardo, Precipitation Behavior in Ultra-Low-Carbon Steels Containing Titanium and Niobium, Trans. A Phys. Metall. Mater. Sci., 1997, 28(9), p 1769–1780. CrossRef M. Hua, C.I. Garcia, A.J. Deardo, Precipitation Behavior in Ultra-Low-Carbon Steels Containing Titanium and Niobium, Trans. A Phys. Metall. Mater. Sci., 1997, 28(9), p 1769–1780. CrossRef
41.
go back to reference S. Takaki, D. Akama, N. Nakada, T. Tsuchiyama, Effect of Grain Boundary Segregation of Interstitial Elements on Hall-Petch Coefficient in Steels, Mater. Trans. - Spec. Issue Strength Fine Grained Mater. - 60 Years Hall–Petch, 2013, 55(1), p 28–34. S. Takaki, D. Akama, N. Nakada, T. Tsuchiyama, Effect of Grain Boundary Segregation of Interstitial Elements on Hall-Petch Coefficient in Steels, Mater. Trans. - Spec. Issue Strength Fine Grained Mater. - 60 Years Hall–Petch, 2013, 55(1), p 28–34.
42.
go back to reference M.J. Roberts, W.S. Owen, Physical Properties of Martensite and Bainite, Special Report no.93, The Iron and Steel Institute, 1965, pp. 171–178 M.J. Roberts, W.S. Owen, Physical Properties of Martensite and Bainite, Special Report no.93, The Iron and Steel Institute, 1965, pp. 171–178
43.
go back to reference Z. Zhang, D.L. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength, Scr. Mater., 2006, 54(7), p 1321–1326. CrossRef Z. Zhang, D.L. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength, Scr. Mater., 2006, 54(7), p 1321–1326. CrossRef
44.
go back to reference R.O. Elliott, C.P. Kempter, Thermal Expansion of Some Transition Metal Carbides, J. Phys. Chem., 1958, 62(5), p 630–631. CrossRef R.O. Elliott, C.P. Kempter, Thermal Expansion of Some Transition Metal Carbides, J. Phys. Chem., 1958, 62(5), p 630–631. CrossRef
45.
go back to reference S. Takaki, Review on the Hall-Petch Relation in Ferritic Steel, Mater. Sci. Forum, 2010, 654–656, p 11–16. CrossRef S. Takaki, Review on the Hall-Petch Relation in Ferritic Steel, Mater. Sci. Forum, 2010, 654–656, p 11–16. CrossRef
46.
go back to reference S. Carabajar, J. Merlin, V. Massardier, S. Chabanet, Precipitation Evolution during the Annealing of an Interstitial-Free Steel, Mater. Sci. Eng. A, 2000, 281(1–2), p 132–142. CrossRef S. Carabajar, J. Merlin, V. Massardier, S. Chabanet, Precipitation Evolution during the Annealing of an Interstitial-Free Steel, Mater. Sci. Eng. A, 2000, 281(1–2), p 132–142. CrossRef
47.
go back to reference A.V. Mamutov, S.F. Golovashchenko, N.M. Bessonov, V.S. Mamutov, Electrohydraulic Forming of Low Volume and Prototype Parts: Process Design and Practical Examples, J. Manuf. Mater. Process., 2021, 5(2), p 47. A.V. Mamutov, S.F. Golovashchenko, N.M. Bessonov, V.S. Mamutov, Electrohydraulic Forming of Low Volume and Prototype Parts: Process Design and Practical Examples, J. Manuf. Mater. Process., 2021, 5(2), p 47.
48.
go back to reference B.M. Dariani, G.H. Liaghat, M. Gerdooei, Experimental Investigation of Sheet Metal Formability under Various Strain Rates, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2009, 223(6), p 703–712. CrossRef B.M. Dariani, G.H. Liaghat, M. Gerdooei, Experimental Investigation of Sheet Metal Formability under Various Strain Rates, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2009, 223(6), p 703–712. CrossRef
50.
go back to reference E. Cantergiani, C. Scott, B. Lawrence, C. Sinclair, 2015 T.C. Graham Prize Winner: High-Strength Interstitial-Free Steel Obtained Using FeC Amorphous Films and Induction Heating for Packaging Applications and Cladding with Lighter Metals for Car Body Panels, Iron Steel Technol., 2016, 13(1) E. Cantergiani, C. Scott, B. Lawrence, C. Sinclair, 2015 T.C. Graham Prize Winner: High-Strength Interstitial-Free Steel Obtained Using FeC Amorphous Films and Induction Heating for Packaging Applications and Cladding with Lighter Metals for Car Body Panels, Iron Steel Technol., 2016, 13(1)
Metadata
Title
Rapid Strengthening of Interstitial Free Steel Using Amorphous FeC Thin Films and Induction Heating
Authors
Elisa Cantergiani
Xavier Sauvage
Colin P. Scott
Arnaud Weck
Publication date
10-05-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 11/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06902-5

Other articles of this Issue 11/2022

Journal of Materials Engineering and Performance 11/2022 Go to the issue

Premium Partners