Skip to main content
Top
Published in: Cellulose 4/2011

01-08-2011

Rapidly calculated DFT relaxed iso-potential ϕ/ψ maps: β-cellobiose

Authors: U. Schnupf, F. A. Momany

Published in: Cellulose | Issue 4/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

New cellobiose ϕHH maps are generated using a mixed basis set DFTr method, found to achieve a high level of confidence while reducing computer resources dramatically. Relaxed iso-potential maps are created for different conformational states of cellobiose, showing how glycosidic bond dihedral angles vary as different sets of hydroxymethyl rotamers and hydroxyl directions are examined. These maps are generated, fixing the dihedral ϕH and ψH values at ten degree intervals and energy optimizing the remaining geometry using the B3LYP/6-31+G* functional for all atoms except carbon atoms, where the functional B3LYP was used with the mixed basis set, 4-31G. Mapping results are compared between in vacuo structures using the mixed basis set, in vacuo using the full basis set, and those in which the implicit solvent method, COSMO, is included with the mixed basis set. Results show significant changes in position of energy minima with variation in hydroxyl rotamers and with application of solvent. Unique to this study is the mapping of the hydration energy at each ϕHH point on the map using the energy derived at each point by applying COSMO. Using hydration gradients as a guide one observes directional solvent driven changes in the minimum energy positions. Interesting internal coordinate variances are described.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Andrianov VM, Zhbankov RG, Dashevski VG (1980) A theoretical study of the vibrational spectrum of cellobiose within the framework of the additive model of interatomic interactions. J Struct Chem 21:320–324CrossRef Andrianov VM, Zhbankov RG, Dashevski VG (1980) A theoretical study of the vibrational spectrum of cellobiose within the framework of the additive model of interatomic interactions. J Struct Chem 21:320–324CrossRef
go back to reference Asensio JL, Jimenez-Barbero J (1995) The use of the AMBER force field in conformational analysis of carbohydrate molecules: Determination of the solution conformation of methyl α-lactoside by NMR spectroscopy, assisted by molecular mechanics and dynamics calculations. Biopolymers 35:55–73CrossRef Asensio JL, Jimenez-Barbero J (1995) The use of the AMBER force field in conformational analysis of carbohydrate molecules: Determination of the solution conformation of methyl α-lactoside by NMR spectroscopy, assisted by molecular mechanics and dynamics calculations. Biopolymers 35:55–73CrossRef
go back to reference Asensio JL, Martin-Pastor M, Jimenez-Barbero J (1997) The use of the MM3* and ESFF force fields in conformational analysis of carbohydrate molecules in solution: the methyl α-lactoside case. J Mol Struct (Theochem) 395–396; 245–270 Asensio JL, Martin-Pastor M, Jimenez-Barbero J (1997) The use of the MM3* and ESFF force fields in conformational analysis of carbohydrate molecules in solution: the methyl α-lactoside case. J Mol Struct (Theochem) 395–396; 245–270
go back to reference Bosma WB, Appell M, Willett JL, Momany FA (2006a) Stepwise hydration of cellobiose by DFT methods: 1. Conformational and structural changes brought about by the addition of one to four water molecules. J Mol Struct (THEOCHEM) 776:13–31 Bosma WB, Appell M, Willett JL, Momany FA (2006a) Stepwise hydration of cellobiose by DFT methods: 1. Conformational and structural changes brought about by the addition of one to four water molecules. J Mol Struct (THEOCHEM) 776:13–31
go back to reference Bosma WB, Appell M, Willett JL, Momany FA (2006b) Stepwise hydration of cellobiose by DFT methods: 2. Energy contributions to relative stabilities of cellobiose (H2O)1–4 complexes. J Mol Struct (THEOCHEM) 776:1–11CrossRef Bosma WB, Appell M, Willett JL, Momany FA (2006b) Stepwise hydration of cellobiose by DFT methods: 2. Energy contributions to relative stabilities of cellobiose (H2O)1–4 complexes. J Mol Struct (THEOCHEM) 776:1–11CrossRef
go back to reference Cheetham NWH, Dasgupta P, Ball GE (2003) NMR and modeling studies of disaccharide conformation. Carbohydr Res 338:955–962CrossRef Cheetham NWH, Dasgupta P, Ball GE (2003) NMR and modeling studies of disaccharide conformation. Carbohydr Res 338:955–962CrossRef
go back to reference Chen JY-J, Naidoo KJ (2003) Evaluating intra-molecular hydrogen bond strengths in (1–4) linked disaccharides from electron density relationships. J Phys Chem B 107:9558–9566CrossRef Chen JY-J, Naidoo KJ (2003) Evaluating intra-molecular hydrogen bond strengths in (1–4) linked disaccharides from electron density relationships. J Phys Chem B 107:9558–9566CrossRef
go back to reference Christensen NJ, Hansen PI, Larsen FH, Folkerman T, Motawia MS, Engelsen SB (2010) A combined nuclear magnetic resonance and molecular dynamics study of the two structural motifs for mixed-linkage β-glucans: methyl β-cellobioside and methyl β-laminarabioside. Carbohydr Res 345:474–486CrossRef Christensen NJ, Hansen PI, Larsen FH, Folkerman T, Motawia MS, Engelsen SB (2010) A combined nuclear magnetic resonance and molecular dynamics study of the two structural motifs for mixed-linkage β-glucans: methyl β-cellobioside and methyl β-laminarabioside. Carbohydr Res 345:474–486CrossRef
go back to reference Chu SSC, Jeffrey GA (1968) The refinement of the crystal structures of β-d-glucose and cellobiose. Acta Cryst B24:830–838 Chu SSC, Jeffrey GA (1968) The refinement of the crystal structures of β-d-glucose and cellobiose. Acta Cryst B24:830–838
go back to reference Cocinero EJ, Gamblin DP, Davis BG, Simons JP (2009) The building blocks of cellulose: the intrinsic conformational structures of cellobiose, its epimer, lactose and their singly hydrated complexes. J Am Chem Soc 131:11117–11123CrossRef Cocinero EJ, Gamblin DP, Davis BG, Simons JP (2009) The building blocks of cellulose: the intrinsic conformational structures of cellobiose, its epimer, lactose and their singly hydrated complexes. J Am Chem Soc 131:11117–11123CrossRef
go back to reference da Silva CO, Nascimento MAC (2004) Ab initio conformational maps for disaccharides in gas phase and aqueous solution. Carbohydr Res 339:113–122CrossRef da Silva CO, Nascimento MAC (2004) Ab initio conformational maps for disaccharides in gas phase and aqueous solution. Carbohydr Res 339:113–122CrossRef
go back to reference Duus JO, Bock K, Ogawa S (1994) An NMR spectroscopic and conformational study of 12 pseudo-disaccharides (d-glucopyranosyl-5a-carba-d- and–l-gluco- pyranoses). Carbohydr Res 252:1–18 Duus JO, Bock K, Ogawa S (1994) An NMR spectroscopic and conformational study of 12 pseudo-disaccharides (d-glucopyranosyl-5a-carba-d- and–l-gluco- pyranoses). Carbohydr Res 252:1–18
go back to reference French AD (1988) Rigid- and relaxed-residue conformational analyses of cellobiose using the computer program MM2. Biopolymers 27:1519–1525CrossRef French AD (1988) Rigid- and relaxed-residue conformational analyses of cellobiose using the computer program MM2. Biopolymers 27:1519–1525CrossRef
go back to reference French AD, Dowd MK (1993) Exploration of disaccharide conformations by molecular mechanics. J Mol Struct (THEOCHEM) 286:183–201CrossRef French AD, Dowd MK (1993) Exploration of disaccharide conformations by molecular mechanics. J Mol Struct (THEOCHEM) 286:183–201CrossRef
go back to reference French AD, Johnson GP (2004) Advanced conformational energy surfaces for cellobiose. Cellulose 11:449–462CrossRef French AD, Johnson GP (2004) Advanced conformational energy surfaces for cellobiose. Cellulose 11:449–462CrossRef
go back to reference French AD, Johnson GP (2006) Quantum mechanics studies of cellobiose conformations. Can J Chem 84:603–612CrossRef French AD, Johnson GP (2006) Quantum mechanics studies of cellobiose conformations. Can J Chem 84:603–612CrossRef
go back to reference French AD, Johnson GP (2008) Roles of starting geometries in quantum mechanics studies of cellobiose. Mol Simul 34:365–372CrossRef French AD, Johnson GP (2008) Roles of starting geometries in quantum mechanics studies of cellobiose. Mol Simul 34:365–372CrossRef
go back to reference French AD, Johnson GP (2009) Cellulose and the twofold screw axis: modeling and experimental arguments. Cellulose 16:959–973CrossRef French AD, Johnson GP (2009) Cellulose and the twofold screw axis: modeling and experimental arguments. Cellulose 16:959–973CrossRef
go back to reference French AD, Kelterer AM, Johnson GP, Dowd MK, Cramer CJ (2000) Construction and evaluating energy surfaces of crystalline disaccharides. J Mol Graph Model 18:95–107CrossRef French AD, Kelterer AM, Johnson GP, Dowd MK, Cramer CJ (2000) Construction and evaluating energy surfaces of crystalline disaccharides. J Mol Graph Model 18:95–107CrossRef
go back to reference French AD, Kelterer A-M, Johnson GP, Dowd MK, Cramer CJ (2001) HF/6–31G* energy surfaces for disaccharide analogs. J Comp Chem 22:65–78CrossRef French AD, Kelterer A-M, Johnson GP, Dowd MK, Cramer CJ (2001) HF/6–31G* energy surfaces for disaccharide analogs. J Comp Chem 22:65–78CrossRef
go back to reference Gessler K, Krauss N, Steiner T, Betzel C, Sarko A, Saenger W (1995) β-d-cellotetraose hemihydrate as a structural model for cellulose II. An X-ray diffraction study. J Am Chem Soc 117:11397–11406CrossRef Gessler K, Krauss N, Steiner T, Betzel C, Sarko A, Saenger W (1995) β-d-cellotetraose hemihydrate as a structural model for cellulose II. An X-ray diffraction study. J Am Chem Soc 117:11397–11406CrossRef
go back to reference Ham JT, Williams DG (1970) The crystal and molecular structure of methyl-β-cellobioside-methanol. Acta Cryst B26:1373–1383 Ham JT, Williams DG (1970) The crystal and molecular structure of methyl-β-cellobioside-methanol. Acta Cryst B26:1373–1383
go back to reference Hamer GK, Balza F, Cyr N, Perlin AS (1978) A conformational study of methyl β-cellobioside-d8 by 13C nuclear magnetic resonance spectroscopy: Dihedral angle dependence of 3JC, H in 13C-O-C-1H arrays. Can J Chem 56:3109–3116CrossRef Hamer GK, Balza F, Cyr N, Perlin AS (1978) A conformational study of methyl β-cellobioside-d8 by 13C nuclear magnetic resonance spectroscopy: Dihedral angle dependence of 3JC, H in 13C-O-C-1H arrays. Can J Chem 56:3109–3116CrossRef
go back to reference Hardy BJ, Sarko AJ (1993a) Conformational analysis and molecular dynamics simulation of cellobiose and larger cellooligomers. J Comput Chem 14:831–847CrossRef Hardy BJ, Sarko AJ (1993a) Conformational analysis and molecular dynamics simulation of cellobiose and larger cellooligomers. J Comput Chem 14:831–847CrossRef
go back to reference Hardy BJ, Sarko AJ (1993b) Molecular dynamics simulation of cellobiose in water. J Comput Chem 14:848–857CrossRef Hardy BJ, Sarko AJ (1993b) Molecular dynamics simulation of cellobiose in water. J Comput Chem 14:848–857CrossRef
go back to reference Hardy BJ, Gutierrez A, Lesiak K, Seidl E, Widmalm G (1996) Structural analysis of the solution conformation of methyl-4-O-b-d-glucopyranosyl-a-d-glucospyranoside by molecular mechanics and ab initio calculation, stochastic dynamics simulation, and NMR spectroscopy. J Phys Chem 100:9187–9192CrossRef Hardy BJ, Gutierrez A, Lesiak K, Seidl E, Widmalm G (1996) Structural analysis of the solution conformation of methyl-4-O-b-d-glucopyranosyl-a-d-glucospyranoside by molecular mechanics and ab initio calculation, stochastic dynamics simulation, and NMR spectroscopy. J Phys Chem 100:9187–9192CrossRef
go back to reference Hirotsu K, Shimada A (1974) The crystal and molecular structure of β-lactose. Bull Chem Soc Jpn 47:1872–1879CrossRef Hirotsu K, Shimada A (1974) The crystal and molecular structure of β-lactose. Bull Chem Soc Jpn 47:1872–1879CrossRef
go back to reference Homans SW (1993) Conformation and dynamics of oligosaccharides in solution. Glycobiology 3:551–555CrossRef Homans SW (1993) Conformation and dynamics of oligosaccharides in solution. Glycobiology 3:551–555CrossRef
go back to reference Horii F, Hirai A, Kitamaru R (1982) Solid-state high-resolution 13C-NMR studies of regenerated cellulose samples with different crystallinities. Polym Bull 8:163–170CrossRef Horii F, Hirai A, Kitamaru R (1982) Solid-state high-resolution 13C-NMR studies of regenerated cellulose samples with different crystallinities. Polym Bull 8:163–170CrossRef
go back to reference Horii F, Hirai A, Kitamaru R (1983) Solid-state 13C-NMR study of conformations of oligosaccharides and cellulose. Polym Bull 10:357–361CrossRef Horii F, Hirai A, Kitamaru R (1983) Solid-state 13C-NMR study of conformations of oligosaccharides and cellulose. Polym Bull 10:357–361CrossRef
go back to reference Hyperchem v8.0.2 (2007) Hypercube, Inc. 115 NW 4th Street, Gainesville, FL, 32602. USA Hyperchem v8.0.2 (2007) Hypercube, Inc. 115 NW 4th Street, Gainesville, FL, 32602. USA
go back to reference Johnson GP, Petersen L, French AD, Reilly PJ (2009) Twisting of glycosidic bonds by hydrolases. Carbohydr Res 344:2157–2166CrossRef Johnson GP, Petersen L, French AD, Reilly PJ (2009) Twisting of glycosidic bonds by hydrolases. Carbohydr Res 344:2157–2166CrossRef
go back to reference Kirschner KN, Woods RJ (2001) Solvent interactions determine carbohydrate conformation. Proc Natl Acad Sci 11:10541–10545CrossRef Kirschner KN, Woods RJ (2001) Solvent interactions determine carbohydrate conformation. Proc Natl Acad Sci 11:10541–10545CrossRef
go back to reference Klamt A, Schüürmann GJ (1993) COSMO-A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Tran II:799–805CrossRef Klamt A, Schüürmann GJ (1993) COSMO-A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Tran II:799–805CrossRef
go back to reference Korolik EV, Ivanova NV, Kolosova TE, Zhbankov RG (1985) Investigation of the IR spectra of cellobiose and O-deuterated cellobiose at the temperature of liquid helium. J Appl Spectrosc 42:551–553CrossRef Korolik EV, Ivanova NV, Kolosova TE, Zhbankov RG (1985) Investigation of the IR spectra of cellobiose and O-deuterated cellobiose at the temperature of liquid helium. J Appl Spectrosc 42:551–553CrossRef
go back to reference Larsson EA, Staaf M, Soderman P, Hoog C, Widmalm G (2004) Determination of the conformational flexibility of methyl α-cellobioside in solution by NMR spectroscopy and molecular simulations. J Phys Chem A 108:3932–3937CrossRef Larsson EA, Staaf M, Soderman P, Hoog C, Widmalm G (2004) Determination of the conformational flexibility of methyl α-cellobioside in solution by NMR spectroscopy and molecular simulations. J Phys Chem A 108:3932–3937CrossRef
go back to reference Leung F, Chanzy HD, Perez S, Marchessault RH (1976) Crystal structure of β-d-acetyl cellobiose, C28H38O19. Can J Chem 54:1365–1371CrossRef Leung F, Chanzy HD, Perez S, Marchessault RH (1976) Crystal structure of β-d-acetyl cellobiose, C28H38O19. Can J Chem 54:1365–1371CrossRef
go back to reference Mackie ID, Rohrling J, Gould RO, Pauli J, Jager C, Walkinshaw M, Potthast A, Rosenau T, Kosma P (2002) Crystal and molecular structure of methyl 4-O-methyl-β-d-glucopyranosyl-(1 → 3)-β-d-glucopyranoside. Carbohydr Res 337:161–166CrossRef Mackie ID, Rohrling J, Gould RO, Pauli J, Jager C, Walkinshaw M, Potthast A, Rosenau T, Kosma P (2002) Crystal and molecular structure of methyl 4-O-methyl-β-d-glucopyranosyl-(1 → 3)-β-d-glucopyranoside. Carbohydr Res 337:161–166CrossRef
go back to reference Mendonca S, Johnson GP, French AD, Laine RA (2002) Conformational analyses of native and permethylated disaccharides. J Phys Chem A 106:4115–4124CrossRef Mendonca S, Johnson GP, French AD, Laine RA (2002) Conformational analyses of native and permethylated disaccharides. J Phys Chem A 106:4115–4124CrossRef
go back to reference Momany FA, Schnupf U (2011) DFTMD studies of b-cellobiose: conformational preference using implicit solvent. Carbohydr Res 340:619–630 Momany FA, Schnupf U (2011) DFTMD studies of b-cellobiose: conformational preference using implicit solvent. Carbohydr Res 340:619–630
go back to reference Olsson U, Serianni AS, Stenutz R (2008) Conformational analysis of β-glycosidic linkages in 13C-labeled glucobioside using inter-residue scalar coupling constants. J Phys Chem B112:4447–4453 Olsson U, Serianni AS, Stenutz R (2008) Conformational analysis of β-glycosidic linkages in 13C-labeled glucobioside using inter-residue scalar coupling constants. J Phys Chem B112:4447–4453
go back to reference Origin v8.0 (2009) OriginLab Corporation, Northampton, MA Origin v8.0 (2009) OriginLab Corporation, Northampton, MA
go back to reference Peralta-Inga Z, Johnson GP, Dowd MK, Rendleman JA, Stevens ED, French AD (2002) The crystal structure of the α-cellobiose 2 NaI·2 H2O complex in the context of related structures and conformational analysis. Carbohydr Res 337:851–861CrossRef Peralta-Inga Z, Johnson GP, Dowd MK, Rendleman JA, Stevens ED, French AD (2002) The crystal structure of the α-cellobiose 2 NaI·2 H2O complex in the context of related structures and conformational analysis. Carbohydr Res 337:851–861CrossRef
go back to reference Pereira CS, Kony D, Baron R, Muller M, van Gunsteren WF, Hunenberger PH (2006) Conformational and dynamical properties of disaccharides in water: a molecular dynamics study. Biophys J 90:4337–4344CrossRef Pereira CS, Kony D, Baron R, Muller M, van Gunsteren WF, Hunenberger PH (2006) Conformational and dynamical properties of disaccharides in water: a molecular dynamics study. Biophys J 90:4337–4344CrossRef
go back to reference Peters T, Meyer B, Stuike-Prill R, Somorjai R, Brisson J-R (1993) A Monte Carlo method for conformational analysis of saccharides. Carbohydr Res 238:49–73CrossRef Peters T, Meyer B, Stuike-Prill R, Somorjai R, Brisson J-R (1993) A Monte Carlo method for conformational analysis of saccharides. Carbohydr Res 238:49–73CrossRef
go back to reference PQS, Ab Initio Program Package v3.3 (2009) Parallel Quantum Solutions, 2013 Green Acres, Suite E, Fayetteville, AR 72703, USA PQS, Ab Initio Program Package v3.3 (2009) Parallel Quantum Solutions, 2013 Green Acres, Suite E, Fayetteville, AR 72703, USA
go back to reference Raymond S, Henrissat B, Qui DT, Kvick A, Chanzy H (1995) The crystal structure of methyl β-cellotrioside monohydrate 0.25 ethanolate and its relationship to cellulose II. Carbohydr Res 277:209–229CrossRef Raymond S, Henrissat B, Qui DT, Kvick A, Chanzy H (1995) The crystal structure of methyl β-cellotrioside monohydrate 0.25 ethanolate and its relationship to cellulose II. Carbohydr Res 277:209–229CrossRef
go back to reference Rencurosi A, Rohrling J, Pauli J, Potthast A, Jager C, Perez S, Kosma P, Imberty A (2002) Polymorphism in the crystal structure of the cellulose fragment analogue methyl 4-O-methyl-β-d-glucopyranosyl-(1–4)-β-d-glucopyranoside. Angew Chem Int Ed 41:4277–4281CrossRef Rencurosi A, Rohrling J, Pauli J, Potthast A, Jager C, Perez S, Kosma P, Imberty A (2002) Polymorphism in the crystal structure of the cellulose fragment analogue methyl 4-O-methyl-β-d-glucopyranosyl-(1–4)-β-d-glucopyranoside. Angew Chem Int Ed 41:4277–4281CrossRef
go back to reference Schnupf U, Willett JL, Bosma WB, Momany FA (2007) DFT studies of the disaccharide, α-maltose: relaxed isopotential maps. Carbohydr Res 342:2270–2285CrossRef Schnupf U, Willett JL, Bosma WB, Momany FA (2007) DFT studies of the disaccharide, α-maltose: relaxed isopotential maps. Carbohydr Res 342:2270–2285CrossRef
go back to reference Schnupf U, Willett JL, Momany FA (2011) 27 ps DFT molecular dynamics simulation of a-maltose: a reduced basis set study. J Comput Chem 31:2087–2097CrossRef Schnupf U, Willett JL, Momany FA (2011) 27 ps DFT molecular dynamics simulation of a-maltose: a reduced basis set study. J Comput Chem 31:2087–2097CrossRef
go back to reference Sergeyev I, Moyna G (2005) Determination of the three-dimensional structure of oligosaccharides in the solid state from experimental 13C NMR data and ab initio chemical shift surfaces. Carbohydr Res 340:1165–1174 Sergeyev I, Moyna G (2005) Determination of the three-dimensional structure of oligosaccharides in the solid state from experimental 13C NMR data and ab initio chemical shift surfaces. Carbohydr Res 340:1165–1174
go back to reference Shen T, Langan P, French AD, Johnson GP, Gnanakaran S (2009) Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence. J Am Chem Soc 131:14786–14794CrossRef Shen T, Langan P, French AD, Johnson GP, Gnanakaran S (2009) Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence. J Am Chem Soc 131:14786–14794CrossRef
go back to reference Sivchik VV, Zhbankov RG (1977) Theoretical investigation of the vibrational spectrum of cellobiose. Translated from Zhurnal Prikladnoi Spektroskopii 27:853–859 Sivchik VV, Zhbankov RG (1977) Theoretical investigation of the vibrational spectrum of cellobiose. Translated from Zhurnal Prikladnoi Spektroskopii 27:853–859
go back to reference Stortz CA, Cerezo AS (2002) Disaccharide conformational maps: 3D contours or 2D plots? Carbohydr Res 337:1861–1871CrossRef Stortz CA, Cerezo AS (2002) Disaccharide conformational maps: 3D contours or 2D plots? Carbohydr Res 337:1861–1871CrossRef
go back to reference Stortz CA, Cerezo AS (2003) Depicting the MM3 potential energy surfaces of trisaccharides by single contour maps: application to β-cellotriose and α-maltotriose. Carbohydr Res 338:95–107CrossRef Stortz CA, Cerezo AS (2003) Depicting the MM3 potential energy surfaces of trisaccharides by single contour maps: application to β-cellotriose and α-maltotriose. Carbohydr Res 338:95–107CrossRef
go back to reference Stortz CA, French AD (2008) Disaccharide conformational maps: adiabaticity in analogues with variable ring shapes. Mol Simul 34:373–389CrossRef Stortz CA, French AD (2008) Disaccharide conformational maps: adiabaticity in analogues with variable ring shapes. Mol Simul 34:373–389CrossRef
go back to reference Stortz CA, Johnson GP, French AD, Csonka GI (2009) Comparison of different force fields for the study of disaccharides. Carbohydr Res 344:2217–2228CrossRef Stortz CA, Johnson GP, French AD, Csonka GI (2009) Comparison of different force fields for the study of disaccharides. Carbohydr Res 344:2217–2228CrossRef
go back to reference Strati GL, Willett JL, Momany FA (2002a) Ab initio computational study of β-cellobiose conformers using B3LYP/6–311++G**. Carbohydr Res 337:1833–1849CrossRef Strati GL, Willett JL, Momany FA (2002a) Ab initio computational study of β-cellobiose conformers using B3LYP/6–311++G**. Carbohydr Res 337:1833–1849CrossRef
go back to reference Strati GL, Willett JL, Momany FA (2002b) A DFT/ab initio study of hydrogen bonding and conformational preference in model cellobiose analogs using B3LYP/6–311++G**. Carbohydr Res 337:1851–1859CrossRef Strati GL, Willett JL, Momany FA (2002b) A DFT/ab initio study of hydrogen bonding and conformational preference in model cellobiose analogs using B3LYP/6–311++G**. Carbohydr Res 337:1851–1859CrossRef
go back to reference Sugiyama H, Hisamichi K, Usui T, Sakai K, Ishiyama J-i (2000) A study of the conformation of β-1, 4-linked glucose oligomers, cellobiose to cellohexaose, in solution. J Mol Struct (THEOCHEM) 556:173–177 Sugiyama H, Hisamichi K, Usui T, Sakai K, Ishiyama J-i (2000) A study of the conformation of β-1, 4-linked glucose oligomers, cellobiose to cellohexaose, in solution. J Mol Struct (THEOCHEM) 556:173–177
go back to reference Suzuki S, Horii F, Kurosu H (2009) Theoretical investigations of 13C chemical shifts in glucose, cellobiose, and native cellulose by quantum chemistry calculations. J Mol Struct (THEOCHEM) 921:219–226 Suzuki S, Horii F, Kurosu H (2009) Theoretical investigations of 13C chemical shifts in glucose, cellobiose, and native cellulose by quantum chemistry calculations. J Mol Struct (THEOCHEM) 921:219–226
go back to reference Tvaroska I (1984) Theoretical studies on the conformation of saccharides. VIII. Solvent effect on the stability of β-cellobiose conformers. Biopolymers 23:1951–1960CrossRef Tvaroska I (1984) Theoretical studies on the conformation of saccharides. VIII. Solvent effect on the stability of β-cellobiose conformers. Biopolymers 23:1951–1960CrossRef
go back to reference Tvaroska I, Taravel FR (1992) One-bond carbon-proton coupling constants: angular dependence in β-linked oligosaccharides. J Biomol NMR 2:421–430CrossRef Tvaroska I, Taravel FR (1992) One-bond carbon-proton coupling constants: angular dependence in β-linked oligosaccharides. J Biomol NMR 2:421–430CrossRef
go back to reference Umemura M, Hayashi S, Nakagawa T, Yamanaka S, Urakawa H, Kajiwara K (2003a) Structure of water molecules in aqueous maltose and cellobiose solutions using molecular dynamics simulation. I. Statics. J Mol Struct (THEOCHEM) 624:129–144CrossRef Umemura M, Hayashi S, Nakagawa T, Yamanaka S, Urakawa H, Kajiwara K (2003a) Structure of water molecules in aqueous maltose and cellobiose solutions using molecular dynamics simulation. I. Statics. J Mol Struct (THEOCHEM) 624:129–144CrossRef
go back to reference Umemura M, Hayashi S, Nakagawa T, Urakawa H, Kajiwara K (2003b) Structure of water molecules in aqueous maltose and cellobiose solutions using molecular dynamics simulation. II. Dynamics. J Mol Struct (THEOCHEM) 636:215–228CrossRef Umemura M, Hayashi S, Nakagawa T, Urakawa H, Kajiwara K (2003b) Structure of water molecules in aqueous maltose and cellobiose solutions using molecular dynamics simulation. II. Dynamics. J Mol Struct (THEOCHEM) 636:215–228CrossRef
go back to reference Umemura M, Yuguchi Y, Hirotsu T (2005) Hydration at glycosidic linkages of malto- and cello-oligosaccharides in aqueous solution from molecular dynamics simulation: effect of conformational flexibility. J Mol Struct (THEOCHEM) 730:1–8CrossRef Umemura M, Yuguchi Y, Hirotsu T (2005) Hydration at glycosidic linkages of malto- and cello-oligosaccharides in aqueous solution from molecular dynamics simulation: effect of conformational flexibility. J Mol Struct (THEOCHEM) 730:1–8CrossRef
go back to reference Vietor RJ, Mazeau K, Lakin M, Perez S (2000) A priori crystal structure prediction of native celluloses. Biopolymers 54:342–354CrossRef Vietor RJ, Mazeau K, Lakin M, Perez S (2000) A priori crystal structure prediction of native celluloses. Biopolymers 54:342–354CrossRef
go back to reference Wacowich-Sgarbi SA, Ling CC, Otter A, Bundle DR (2001) A tethered disaccharide trapped as its anti-conformer calibrates the Karplus relationship for 3JC, H coupling constants. J Am Chem Soc 123:4362–4363CrossRef Wacowich-Sgarbi SA, Ling CC, Otter A, Bundle DR (2001) A tethered disaccharide trapped as its anti-conformer calibrates the Karplus relationship for 3JC, H coupling constants. J Am Chem Soc 123:4362–4363CrossRef
go back to reference Yoneda Y, Mereiter K, Jaeger C, Brecker L, Kosma P, Rosenau T, French A (2008) van der Waals versus hydrogen-bonding forces in a crystalline analog of cellotetraose: cyclohexyl 4′-O-cyclohexyl β-d-cellobioside cyclohexane solvent. J Am Chem Soc 130:16678–16690CrossRef Yoneda Y, Mereiter K, Jaeger C, Brecker L, Kosma P, Rosenau T, French A (2008) van der Waals versus hydrogen-bonding forces in a crystalline analog of cellotetraose: cyclohexyl 4′-O-cyclohexyl β-d-cellobioside cyclohexane solvent. J Am Chem Soc 130:16678–16690CrossRef
go back to reference York WS, Yi X (2004) CONDORR-CONstrained dynamics of rigid residues: a molecular dynamics program for constrained molecules. J Mol Model 10:271–289CrossRef York WS, Yi X (2004) CONDORR-CONstrained dynamics of rigid residues: a molecular dynamics program for constrained molecules. J Mol Model 10:271–289CrossRef
go back to reference Zhang W, Zhao W, Carmichael H, Serianni AS (2009) An NMR investigation of putative inter-residue H-bonding in methyl α-cellobioside in solution. Carbohydr Res 344:1582–1587CrossRef Zhang W, Zhao W, Carmichael H, Serianni AS (2009) An NMR investigation of putative inter-residue H-bonding in methyl α-cellobioside in solution. Carbohydr Res 344:1582–1587CrossRef
Metadata
Title
Rapidly calculated DFT relaxed iso-potential ϕ/ψ maps: β-cellobiose
Authors
U. Schnupf
F. A. Momany
Publication date
01-08-2011
Publisher
Springer Netherlands
Published in
Cellulose / Issue 4/2011
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-011-9537-8

Other articles of this Issue 4/2011

Cellulose 4/2011 Go to the issue