Skip to main content
Top

2022 | OriginalPaper | Chapter

12. Rare-Earth Ion-Based Photon Up-Conversion for Transmission-Loss Reduction in Solar Cells

Authors : Hai-Qiao Wang, Andres Osvet, Miroslaw Batentschuk, Christoph J. Brabec

Published in: Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Photon up-conversion (UC) describes an anti-Stokes emission process, in which a luminophor emits one higher energy photon after being excited by multiple low-energy photons, among which rare-earth (RE) ion-doped materials present promising UC properties due to unique electron configuration. RE UC materials have been widely studied in solar cells with the purpose to reduce transmission losses, i.e., achieve wide/full solar spectral harvesting and high-power conversion efficiency, by converting unutilized sub-bandgap photons into sensitive resonant photons. This chapter exclusively focuses on RE-doped UC materials and their applications in solar cells. The RE-based UC photophysics, UC enhancement, and applications in solar cells will be reviewed and briefly discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L.C. Hirst, N.J. Ekins-Daukes, Fundamental losses in solar cells. Prog. Photovolt. Res. Appl. 19, 286–293 (2011)CrossRef L.C. Hirst, N.J. Ekins-Daukes, Fundamental losses in solar cells. Prog. Photovolt. Res. Appl. 19, 286–293 (2011)CrossRef
2.
go back to reference W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)CrossRef W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)CrossRef
3.
go back to reference H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, C.J. Brabec, Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 23, 2675–2680 (2011b)CrossRef H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, C.J. Brabec, Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 23, 2675–2680 (2011b)CrossRef
4.
go back to reference J. de Wild, A. Meijerink, J.K. Rath, W.G.J.H.M. van Sark, R.E.I. Schropp, Upconverter solar cells: materials and applications. Energy Environ. Sci. 4, 4835–4848 (2011)CrossRef J. de Wild, A. Meijerink, J.K. Rath, W.G.J.H.M. van Sark, R.E.I. Schropp, Upconverter solar cells: materials and applications. Energy Environ. Sci. 4, 4835–4848 (2011)CrossRef
5.
go back to reference D. Wöhrle, D. Meissner, Organic solar cells. Adv. Mater. 3, 129–138 (1991)CrossRef D. Wöhrle, D. Meissner, Organic solar cells. Adv. Mater. 3, 129–138 (1991)CrossRef
6.
go back to reference Y. Cai, L. Huo, Y. Sun, Recent advances in wide-bandgap photovoltaic polymers. Adv. Mater. 29, 1605437 (2017)CrossRef Y. Cai, L. Huo, Y. Sun, Recent advances in wide-bandgap photovoltaic polymers. Adv. Mater. 29, 1605437 (2017)CrossRef
7.
go back to reference G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323–1338 (2009)CrossRef G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323–1338 (2009)CrossRef
8.
go back to reference H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview. J. Mater. Res. 19, 1924–1945 (2011)CrossRef H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview. J. Mater. Res. 19, 1924–1945 (2011)CrossRef
9.
go back to reference T. Ameri, G. Dennler, C. Lungenschmied, C.J. Brabec, Organic tandem solar cells: a review. Energy Environ. Sci. 2, 347–363 (2009)CrossRef T. Ameri, G. Dennler, C. Lungenschmied, C.J. Brabec, Organic tandem solar cells: a review. Energy Environ. Sci. 2, 347–363 (2009)CrossRef
10.
go back to reference T. Ameri, N. Li, C.J. Brabec, Highly efficient organic tandem solar cells: a follow up review. Energy Environ. Sci. 6, 2390–2413 (2013)CrossRef T. Ameri, N. Li, C.J. Brabec, Highly efficient organic tandem solar cells: a follow up review. Energy Environ. Sci. 6, 2390–2413 (2013)CrossRef
11.
go back to reference R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, B. de Boer, Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polym. Rev. 48, 531–582 (2008)CrossRef R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, B. de Boer, Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polym. Rev. 48, 531–582 (2008)CrossRef
12.
go back to reference T. Dilbeck, K. Hanson, Molecular photon upconversion solar cells using multilayer assemblies: progress and prospects. J. Phys. Chem. Lett. 9, 5810–5821 (2018)CrossRef T. Dilbeck, K. Hanson, Molecular photon upconversion solar cells using multilayer assemblies: progress and prospects. J. Phys. Chem. Lett. 9, 5810–5821 (2018)CrossRef
13.
go back to reference A.J. Nozik, J. Miller, Introduction to solar photon conversion. Chem. Rev. 110, 6443–6445 (2010)CrossRef A.J. Nozik, J. Miller, Introduction to solar photon conversion. Chem. Rev. 110, 6443–6445 (2010)CrossRef
14.
go back to reference X. Xie, X. Liu, Upconversion goes broadband. Nat. Mater. 11, 842–843 (2012)CrossRef X. Xie, X. Liu, Upconversion goes broadband. Nat. Mater. 11, 842–843 (2012)CrossRef
15.
go back to reference C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839–3856 (2010)CrossRef C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839–3856 (2010)CrossRef
16.
go back to reference N. Bloembergen, Solid state infrared quantum counters. Phys. Rev. Lett. 2, 84–85 (1959)CrossRef N. Bloembergen, Solid state infrared quantum counters. Phys. Rev. Lett. 2, 84–85 (1959)CrossRef
17.
go back to reference X. Liu, C.-H. Yan, J.A. Capobianco, Photon upconversion nanomaterials. Chem. Soc. Rev. 44, 1299–1301 (2015)CrossRef X. Liu, C.-H. Yan, J.A. Capobianco, Photon upconversion nanomaterials. Chem. Soc. Rev. 44, 1299–1301 (2015)CrossRef
18.
go back to reference F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004)CrossRef F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004)CrossRef
19.
go back to reference V. Gray, K. Moth-Poulsen, B. Albinsson, M. Abrahamsson, Towards efficient solid-state triplet–triplet annihilation based photon upconversion: supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 362, 54–71 (2018)CrossRef V. Gray, K. Moth-Poulsen, B. Albinsson, M. Abrahamsson, Towards efficient solid-state triplet–triplet annihilation based photon upconversion: supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 362, 54–71 (2018)CrossRef
20.
go back to reference A. Nonat, T. Fix, 6—photon converters for photovoltaics, in Advanced Micro- and Nanomaterials for Photovoltaics, ed. by D. Ginley, T. Fix, (Elsevier, 2019), pp. 121–151CrossRef A. Nonat, T. Fix, 6—photon converters for photovoltaics, in Advanced Micro- and Nanomaterials for Photovoltaics, ed. by D. Ginley, T. Fix, (Elsevier, 2019), pp. 121–151CrossRef
21.
go back to reference J.A. Briggs, A.C. Atre, J.A. Dionne, Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits. J. Appl. Phys. 113, 124509 (2013)CrossRef J.A. Briggs, A.C. Atre, J.A. Dionne, Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits. J. Appl. Phys. 113, 124509 (2013)CrossRef
22.
go back to reference T. Trupke, A. Shalav, B.S. Richards, P. Würfel, M.A. Green, Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006)CrossRef T. Trupke, A. Shalav, B.S. Richards, P. Würfel, M.A. Green, Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006)CrossRef
23.
go back to reference G. Chen, J. Shen, T.Y. Ohulchanskyy, N.J. Patel, A. Kutikov, Z. Li, J. Song, R.K. Pandey, H. Ågren, P.N. Prasad, G. Han, (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6, 8280–8287 (2012)CrossRef G. Chen, J. Shen, T.Y. Ohulchanskyy, N.J. Patel, A. Kutikov, Z. Li, J. Song, R.K. Pandey, H. Ågren, P.N. Prasad, G. Han, (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6, 8280–8287 (2012)CrossRef
24.
go back to reference P. Gibart, F. Auzel, J.-C. Guillaume, K. Zahraman, Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion. Jpn. J. Appl. Phys. 35, 4401–4402 (1996)CrossRef P. Gibart, F. Auzel, J.-C. Guillaume, K. Zahraman, Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion. Jpn. J. Appl. Phys. 35, 4401–4402 (1996)CrossRef
25.
go back to reference G. Liu, Electronic energy level structure, in Spectroscopic Properties of Rare Earths in Optical Materials, ed. by R. Hull, J. Parisi, R. M. Osgood, H. Warlimont, G. Liu, B. Jacquier, (Springer, Berlin, Heidelberg, 2005), pp. 1–94 G. Liu, Electronic energy level structure, in Spectroscopic Properties of Rare Earths in Optical Materials, ed. by R. Hull, J. Parisi, R. M. Osgood, H. Warlimont, G. Liu, B. Jacquier, (Springer, Berlin, Heidelberg, 2005), pp. 1–94
26.
go back to reference S.V. Eliseeva, J.C.G. Bunzli, Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189–227 (2010)CrossRef S.V. Eliseeva, J.C.G. Bunzli, Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189–227 (2010)CrossRef
27.
go back to reference F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10, 968–973 (2011a)CrossRef F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10, 968–973 (2011a)CrossRef
28.
go back to reference O. Ehlert, R. Thomann, M. Darbandi, T. Nann, A four-color colloidal multiplexing nanoparticle system. ACS Nano 2, 120–124 (2008)CrossRef O. Ehlert, R. Thomann, M. Darbandi, T. Nann, A four-color colloidal multiplexing nanoparticle system. ACS Nano 2, 120–124 (2008)CrossRef
29.
go back to reference J.C. Boyer, F.C.J.M. van Veggel, Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2, 1417–1419 (2010)CrossRef J.C. Boyer, F.C.J.M. van Veggel, Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2, 1417–1419 (2010)CrossRef
30.
go back to reference G.A. Crosby, J.N. Demas, Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75, 991–1024 (1971)CrossRef G.A. Crosby, J.N. Demas, Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75, 991–1024 (1971)CrossRef
31.
go back to reference Y. Zorenko, V. Gorbenko, T. Zorenko, K. Paprocki, A. Osvet, M. Batentschuk, C. Brabec, A. Fedorov, Enhancement of up-conversion luminescence in Er,Ce doped Y3−xYbxAG single crystalline films. J. Lumin. 169, 816–821 (2016)CrossRef Y. Zorenko, V. Gorbenko, T. Zorenko, K. Paprocki, A. Osvet, M. Batentschuk, C. Brabec, A. Fedorov, Enhancement of up-conversion luminescence in Er,Ce doped Y3−xYbxAG single crystalline films. J. Lumin. 169, 816–821 (2016)CrossRef
32.
go back to reference F. Wang, X. Liu, Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008)CrossRef F. Wang, X. Liu, Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008)CrossRef
33.
go back to reference D. Li, H. Ågren, G. Chen, Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials. Dalton Trans. 47, 8526–8537 (2018)CrossRef D. Li, H. Ågren, G. Chen, Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials. Dalton Trans. 47, 8526–8537 (2018)CrossRef
34.
go back to reference H.-Q. Wang, M. Mačković, A. Osvet, I. Litzov, E. Epelbaum, A. Stiegelschmitt, M. Batentschuk, E. Spiecker, C.J. Brabec, A new crystal phase molybdate Yb2Mo4O15: the synthesis and upconversion properties. Part. Part. Syst. Charact. 32, 340–346 (2015)CrossRef H.-Q. Wang, M. Mačković, A. Osvet, I. Litzov, E. Epelbaum, A. Stiegelschmitt, M. Batentschuk, E. Spiecker, C.J. Brabec, A new crystal phase molybdate Yb2Mo4O15: the synthesis and upconversion properties. Part. Part. Syst. Charact. 32, 340–346 (2015)CrossRef
35.
go back to reference K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, S.R. Lüthi, Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 16, 1244–1251 (2004)CrossRef K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, S.R. Lüthi, Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 16, 1244–1251 (2004)CrossRef
36.
go back to reference I. Etchart, Metal Oxides for Efficient Infrared to Visible Upconversion. University of Cambrige Ph.D. Thesis (2010) I. Etchart, Metal Oxides for Efficient Infrared to Visible Upconversion. University of Cambrige Ph.D. Thesis (2010)
37.
go back to reference A. Nadort, J. Zhao, E.M. Goldys, Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 8, 13099–13130 (2016)CrossRef A. Nadort, J. Zhao, E.M. Goldys, Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 8, 13099–13130 (2016)CrossRef
38.
go back to reference J.H.V. Vleck, The puzzle of rare-earth spectra in solids. J. Phys. Chem. 41, 67–80 (1937)CrossRef J.H.V. Vleck, The puzzle of rare-earth spectra in solids. J. Phys. Chem. 41, 67–80 (1937)CrossRef
39.
go back to reference H.-Q. Wang, T. Nann, Book Chapter: Upconverting nanoparticles, in Springer Book: Lanthanide Luminescence, vol. 7, (2010), pp. 115–132CrossRef H.-Q. Wang, T. Nann, Book Chapter: Upconverting nanoparticles, in Springer Book: Lanthanide Luminescence, vol. 7, (2010), pp. 115–132CrossRef
40.
go back to reference J.C. Goldschmidt, S. Fischer, Upconversion for photovoltaics—a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 3, 510–535 (2015)CrossRef J.C. Goldschmidt, S. Fischer, Upconversion for photovoltaics—a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 3, 510–535 (2015)CrossRef
41.
go back to reference S. Heer, K. Kömpe, H.-U. Güdel, M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105 (2004)CrossRef S. Heer, K. Kömpe, H.-U. Güdel, M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105 (2004)CrossRef
42.
go back to reference H. Dong, L.-D. Sun, C.-H. Yan, Basic understanding of the lanthanide related upconversion emissions. Nanoscale 5, 5703–5714 (2013)CrossRef H. Dong, L.-D. Sun, C.-H. Yan, Basic understanding of the lanthanide related upconversion emissions. Nanoscale 5, 5703–5714 (2013)CrossRef
43.
go back to reference H.-Q. Wang, T. Nann, Monodisperse upconverting nanocrystals by microwave-assisted synthesis. ACS Nano 3, 3804–3808 (2009)CrossRef H.-Q. Wang, T. Nann, Monodisperse upconverting nanocrystals by microwave-assisted synthesis. ACS Nano 3, 3804–3808 (2009)CrossRef
44.
go back to reference Z. Li, Y. Zhang, S. Jiang, Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20, 4765–4769 (2008)CrossRef Z. Li, Y. Zhang, S. Jiang, Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20, 4765–4769 (2008)CrossRef
45.
go back to reference Y. Wang, L. Tu, J. Zhao, Y. Sun, X. Kong, H. Zhang, Upconversion luminescence of β-NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: excitation power density and surface dependence. J. Phys. Chem. C 113, 7164–7169 (2009)CrossRef Y. Wang, L. Tu, J. Zhao, Y. Sun, X. Kong, H. Zhang, Upconversion luminescence of β-NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: excitation power density and surface dependence. J. Phys. Chem. C 113, 7164–7169 (2009)CrossRef
46.
go back to reference H.-S. Qian, Y. Zhang, Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 24, 12123–12125 (2008)CrossRef H.-S. Qian, Y. Zhang, Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 24, 12123–12125 (2008)CrossRef
47.
go back to reference G.-S. Yi, G.-M. Chow, Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19, 341–343 (2007)CrossRef G.-S. Yi, G.-M. Chow, Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19, 341–343 (2007)CrossRef
48.
go back to reference F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, D. Zhao, Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett. 12, 2852–2858 (2012a)CrossRef F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, D. Zhao, Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett. 12, 2852–2858 (2012a)CrossRef
49.
go back to reference X. Li, D. Shen, J. Yang, C. Yao, R. Che, F. Zhang, D. Zhao, Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties. Chem. Mater. 25, 106–112 (2013)CrossRef X. Li, D. Shen, J. Yang, C. Yao, R. Che, F. Zhang, D. Zhao, Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties. Chem. Mater. 25, 106–112 (2013)CrossRef
50.
go back to reference Z. Li, W. Park, G. Zorzetto, J.S. Lemaire, C.J. Summers, Synthesis protocols for δ-doped NaYF4:Yb,Er. Chem. Mater. 26, 1770–1778 (2014)CrossRef Z. Li, W. Park, G. Zorzetto, J.S. Lemaire, C.J. Summers, Synthesis protocols for δ-doped NaYF4:Yb,Er. Chem. Mater. 26, 1770–1778 (2014)CrossRef
51.
go back to reference H. Zhang, Y. Li, I.A. Ivanov, Y. Qu, Y. Huang, X. Duan, Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 49, 2865–2868 (2010)CrossRef H. Zhang, Y. Li, I.A. Ivanov, Y. Qu, Y. Huang, X. Duan, Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 49, 2865–2868 (2010)CrossRef
52.
go back to reference S.P. Madsen, J. Christiansen, R.E. Christiansen, J. Vester-Petersen, S.H. Møller, H. Lakhotiya, A. Nazir, E. Eriksen, S. Roesgaard, O. Sigmund, J.S. Lissau, E. Destouesse, M. Madsen, B. Julsgaard, P. Balling, Improving the efficiency of upconversion by light concentration using nanoparticle design. J. Phys. D. Appl. Phys. 53, 073001 (2019)CrossRef S.P. Madsen, J. Christiansen, R.E. Christiansen, J. Vester-Petersen, S.H. Møller, H. Lakhotiya, A. Nazir, E. Eriksen, S. Roesgaard, O. Sigmund, J.S. Lissau, E. Destouesse, M. Madsen, B. Julsgaard, P. Balling, Improving the efficiency of upconversion by light concentration using nanoparticle design. J. Phys. D. Appl. Phys. 53, 073001 (2019)CrossRef
53.
go back to reference W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I.M. Kennedy, E.M. Goldys, Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures. Nanotechnology 22, 325604 (2011)CrossRef W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I.M. Kennedy, E.M. Goldys, Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures. Nanotechnology 22, 325604 (2011)CrossRef
54.
go back to reference J.H. Lin, H.Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, C.C. Hsu, Giant enhancement of upconversion fluorescence of NaYF4:Yb3+,Tm3+ nanocrystals with resonant waveguide grating substrate. ACS Photonics 2, 530–536 (2015)CrossRef J.H. Lin, H.Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, C.C. Hsu, Giant enhancement of upconversion fluorescence of NaYF4:Yb3+,Tm3+ nanocrystals with resonant waveguide grating substrate. ACS Photonics 2, 530–536 (2015)CrossRef
55.
go back to reference W. Zou, C. Visser, J.A. Maduro, M.S. Pshenichnikov, J.C. Hummelen, Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 6, 560–564 (2012)CrossRef W. Zou, C. Visser, J.A. Maduro, M.S. Pshenichnikov, J.C. Hummelen, Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 6, 560–564 (2012)CrossRef
56.
go back to reference G. Chen, J. Damasco, H. Qiu, W. Shao, T.Y. Ohulchanskyy, R.R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, P.N. Prasad, Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 15, 7400–7407 (2015a)CrossRef G. Chen, J. Damasco, H. Qiu, W. Shao, T.Y. Ohulchanskyy, R.R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, P.N. Prasad, Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 15, 7400–7407 (2015a)CrossRef
57.
go back to reference J.F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K.W. Krämer, C. Reinhard, H.U. Güdel, Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27, 1111–1130 (2005)CrossRef J.F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K.W. Krämer, C. Reinhard, H.U. Güdel, Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27, 1111–1130 (2005)CrossRef
58.
go back to reference Y. Zhang, J.D. Lin, V. Vijayaragavan, K.K. Bhakoo, T.T.Y. Tan, Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging. Chem. Commun. 48, 10322–10324 (2012b)CrossRef Y. Zhang, J.D. Lin, V. Vijayaragavan, K.K. Bhakoo, T.T.Y. Tan, Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging. Chem. Commun. 48, 10322–10324 (2012b)CrossRef
59.
go back to reference D. Gao, X. Zhang, W. Gao, Formation of bundle-shaped β-NaYF4 upconversion microtubes via Ostwald ripening. ACS Appl. Mater. Interfaces 5, 9732–9739 (2013)CrossRef D. Gao, X. Zhang, W. Gao, Formation of bundle-shaped β-NaYF4 upconversion microtubes via Ostwald ripening. ACS Appl. Mater. Interfaces 5, 9732–9739 (2013)CrossRef
60.
go back to reference Z. Wu, M. Lin, S. Liang, Y. Liu, H. Zhang, B. Yang, Hot-injection synthesis of manganese-ion-doped NaYF4:Yb,Er nanocrystals with red up-converting emission and tunable diameter. Part. Part. Syst. Charact. 30, 311–315 (2013)CrossRef Z. Wu, M. Lin, S. Liang, Y. Liu, H. Zhang, B. Yang, Hot-injection synthesis of manganese-ion-doped NaYF4:Yb,Er nanocrystals with red up-converting emission and tunable diameter. Part. Part. Syst. Charact. 30, 311–315 (2013)CrossRef
61.
go back to reference L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K.R. Kittilstved, A. Aebischer, J.-C.G. Bünzli, A. Hauser, C. Piguet, Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex. Angew. Chem. Int. Ed. 50, 4108–4112 (2011)CrossRef L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K.R. Kittilstved, A. Aebischer, J.-C.G. Bünzli, A. Hauser, C. Piguet, Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex. Angew. Chem. Int. Ed. 50, 4108–4112 (2011)CrossRef
62.
go back to reference L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, C. Piguet, Optical sensitization and upconversion in discrete polynuclear chromium-lanthanide complexes. Coord. Chem. Rev. 256, 1644–1663 (2012)CrossRef L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, C. Piguet, Optical sensitization and upconversion in discrete polynuclear chromium-lanthanide complexes. Coord. Chem. Rev. 256, 1644–1663 (2012)CrossRef
63.
go back to reference S. Ye, E.H. Song, E. Ma, S.J. Zhang, J. Wang, X.Y. Chen, Q.Y. Zhang, J.R. Qiu, Broadband Cr3+-sensitized upconversion luminescence in La3Ga5GeO14:Cr3+,Yb3+,Er3+. Opt. Mater. Express 4, 638–648 (2014) S. Ye, E.H. Song, E. Ma, S.J. Zhang, J. Wang, X.Y. Chen, Q.Y. Zhang, J.R. Qiu, Broadband Cr3+-sensitized upconversion luminescence in La3Ga5GeO14:Cr3+,Yb3+,Er3+. Opt. Mater. Express 4, 638–648 (2014)
64.
go back to reference Y. Takeda, S. Mizuno, H.N. Luitel, T. Tani, A broadband-sensitive upconverter La(Ga0.5Sc0.5)O3:Er,Ni,Nb for crystalline silicon solar cells. Appl. Phys. Lett. 108, 043901 (2016)CrossRef Y. Takeda, S. Mizuno, H.N. Luitel, T. Tani, A broadband-sensitive upconverter La(Ga0.5Sc0.5)O3:Er,Ni,Nb for crystalline silicon solar cells. Appl. Phys. Lett. 108, 043901 (2016)CrossRef
65.
go back to reference H. Liu, C.T. Xu, G. Dumlupinar, O.B. Jensen, P.E. Andersen, S. Andersson-Engels, Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power. Nanoscale 5, 10034–10040 (2013)CrossRef H. Liu, C.T. Xu, G. Dumlupinar, O.B. Jensen, P.E. Andersen, S. Andersson-Engels, Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power. Nanoscale 5, 10034–10040 (2013)CrossRef
66.
go back to reference Z. Chen, W. Cui, S. Kang, H. Zhang, G. Dong, C. Jiang, S. Zhou, J. Qiu, Fast-slow red upconversion fluorescence modulation from Ho3+-doped glass ceramics upon two-wavelength excitation. Adv. Opt. Mater. 5, 1600554 (2017)CrossRef Z. Chen, W. Cui, S. Kang, H. Zhang, G. Dong, C. Jiang, S. Zhou, J. Qiu, Fast-slow red upconversion fluorescence modulation from Ho3+-doped glass ceramics upon two-wavelength excitation. Adv. Opt. Mater. 5, 1600554 (2017)CrossRef
67.
go back to reference Z. Chen, G. Wu, H. Jia, K. Sharafudeen, W. Dai, X. Zhang, S. Zeng, J. Liu, R. Wei, S. Lv, G. Dong, J. Qiu, Improved up-conversion luminescence from Er3+:LaF3 nanocrystals embedded in oxyfluoride glass ceramics via simultaneous triwavelength excitation. J. Phys. Chem. C 119, 24056–24061 (2015c)CrossRef Z. Chen, G. Wu, H. Jia, K. Sharafudeen, W. Dai, X. Zhang, S. Zeng, J. Liu, R. Wei, S. Lv, G. Dong, J. Qiu, Improved up-conversion luminescence from Er3+:LaF3 nanocrystals embedded in oxyfluoride glass ceramics via simultaneous triwavelength excitation. J. Phys. Chem. C 119, 24056–24061 (2015c)CrossRef
68.
go back to reference V. Saxena, Phosphors for Solar-Cells-tb-Doped Lanthanum Fluoride and th-Doped Calcium Tungstate (Council Scientific Industrial Research Publ & Info Directorate, New Delhi, 1983), pp. 306–307 V. Saxena, Phosphors for Solar-Cells-tb-Doped Lanthanum Fluoride and th-Doped Calcium Tungstate (Council Scientific Industrial Research Publ & Info Directorate, New Delhi, 1983), pp. 306–307
69.
go back to reference A. Shalav, B.S. Richards, T. Trupke, K.W. Krämer, H.U. Güdel, Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett. 86, 013505 (2005)CrossRef A. Shalav, B.S. Richards, T. Trupke, K.W. Krämer, H.U. Güdel, Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett. 86, 013505 (2005)CrossRef
70.
go back to reference S. Fischer, E. Favilla, M. Tonelli, J.C. Goldschmidt, Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter. Sol. Energy Mater. Sol. Cells 136, 127–134 (2015)CrossRef S. Fischer, E. Favilla, M. Tonelli, J.C. Goldschmidt, Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter. Sol. Energy Mater. Sol. Cells 136, 127–134 (2015)CrossRef
71.
go back to reference F. Lahoz, Ho3+-doped nanophase glass ceramics for efficiency enhancement in silicon solar cells. Opt. Lett. 33, 2982–2984 (2008)CrossRef F. Lahoz, Ho3+-doped nanophase glass ceramics for efficiency enhancement in silicon solar cells. Opt. Lett. 33, 2982–2984 (2008)CrossRef
72.
go back to reference F. Lahoz, C. Pérez-Rodríguez, S.E. Hernández, I.R. Martín, V. Lavín, U.R. Rodríguez-Mendoza, Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells. Sol. Energy Mater. Sol. Cells 95, 1671–1677 (2011)CrossRef F. Lahoz, C. Pérez-Rodríguez, S.E. Hernández, I.R. Martín, V. Lavín, U.R. Rodríguez-Mendoza, Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells. Sol. Energy Mater. Sol. Cells 95, 1671–1677 (2011)CrossRef
73.
go back to reference J. de Wild, J.K. Rath, A. Meijerink, W.G.J.H.M. van Sark, R.E.I. Schropp, Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors. Sol. Energy Mater. Sol. Cells 94, 2395–2398 (2010)CrossRef J. de Wild, J.K. Rath, A. Meijerink, W.G.J.H.M. van Sark, R.E.I. Schropp, Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors. Sol. Energy Mater. Sol. Cells 94, 2395–2398 (2010)CrossRef
74.
go back to reference M. Takei, Conductive paste for solar cell, Pat. Nr. JP20100099623 20100423 (A) (2011) M. Takei, Conductive paste for solar cell, Pat. Nr. JP20100099623 20100423 (A) (2011)
75.
go back to reference C. Miao, T. Liu, Y. Zhu, Q. Dai, W. Xu, L. Xu, S. Xu, Y. Zhao, H. Song, Super-intense white upconversion emission of Yb2O3 polycrystals and its application on luminescence converter of dye-sensitized solar cells. Opt. Lett. 38, 3340–3343 (2013)CrossRef C. Miao, T. Liu, Y. Zhu, Q. Dai, W. Xu, L. Xu, S. Xu, Y. Zhao, H. Song, Super-intense white upconversion emission of Yb2O3 polycrystals and its application on luminescence converter of dye-sensitized solar cells. Opt. Lett. 38, 3340–3343 (2013)CrossRef
76.
go back to reference G.B. Shan, G.P. Demopoulos, Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv. Mater. 22, 4373–4377 (2010)CrossRef G.B. Shan, G.P. Demopoulos, Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv. Mater. 22, 4373–4377 (2010)CrossRef
77.
go back to reference Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, X.-Z. Zhao, Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles. Nanoscale 6, 2052–2055 (2014)CrossRef Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, X.-Z. Zhao, Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles. Nanoscale 6, 2052–2055 (2014)CrossRef
78.
go back to reference L. Liang, Y. Liu, C. Bu, K. Guo, W. Sun, N. Huang, T. Peng, B. Sebo, M. Pan, W. Liu, S. Guo, X.-Z. Zhao, Highly uniform, bifunctional core/double-shell-structured β-NaYF4:Er3+, Yb3+ @ SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cells. Adv. Mater. 25, 2174–2180 (2013)CrossRef L. Liang, Y. Liu, C. Bu, K. Guo, W. Sun, N. Huang, T. Peng, B. Sebo, M. Pan, W. Liu, S. Guo, X.-Z. Zhao, Highly uniform, bifunctional core/double-shell-structured β-NaYF4:Er3+, Yb3+ @ SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cells. Adv. Mater. 25, 2174–2180 (2013)CrossRef
79.
go back to reference C. Yuan, G. Chen, P.N. Prasad, T.Y. Ohulchanskyy, Z. Ning, H. Tian, L. Sun, H. Ågren, Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region. J. Mater. Chem. 22, 16709–16713 (2012)CrossRef C. Yuan, G. Chen, P.N. Prasad, T.Y. Ohulchanskyy, Z. Ning, H. Tian, L. Sun, H. Ågren, Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region. J. Mater. Chem. 22, 16709–16713 (2012)CrossRef
80.
go back to reference G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Design rules for donors in bulk-heterojunction tandem solar cells towards 15% energy-conversion efficiency. Adv. Mater. 20, 579–583 (2008)CrossRef G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Design rules for donors in bulk-heterojunction tandem solar cells towards 15% energy-conversion efficiency. Adv. Mater. 20, 579–583 (2008)CrossRef
81.
go back to reference W. Chen, Y. Hou, A. Osvet, F. Guo, P. Kubis, M. Batentschuk, B. Winter, E. Spiecker, K. Forberich, C.J. Brabec, Sub-bandgap photon harvesting for organic solar cells via integrating up-conversion nanophosphors. Org. Electron. 19, 113–119 (2015b)CrossRef W. Chen, Y. Hou, A. Osvet, F. Guo, P. Kubis, M. Batentschuk, B. Winter, E. Spiecker, K. Forberich, C.J. Brabec, Sub-bandgap photon harvesting for organic solar cells via integrating up-conversion nanophosphors. Org. Electron. 19, 113–119 (2015b)CrossRef
82.
go back to reference H.-Q. Wang, T. Stubhan, A. Osvet, I. Litzov, C.J. Brabec, Up-conversion semiconducting MoO3:Yb/Er nanocomposites as buffer layer in organic solar cells. Sol. Energy Mater. Sol. Cells 105, 196–201 (2012)CrossRef H.-Q. Wang, T. Stubhan, A. Osvet, I. Litzov, C.J. Brabec, Up-conversion semiconducting MoO3:Yb/Er nanocomposites as buffer layer in organic solar cells. Sol. Energy Mater. Sol. Cells 105, 196–201 (2012)CrossRef
83.
go back to reference W. Guo, K. Zheng, W. Xie, L. Sun, L. Shen, C. Liu, Y. He, Z. Zhang, Efficiency enhancement of inverted polymer solar cells by doping NaYF4:Yb3+, Er3+ nanocomposites in PCDTBT:PCBM active layer. Sol. Energy Mater. Sol. Cells 124, 126–132 (2014)CrossRef W. Guo, K. Zheng, W. Xie, L. Sun, L. Shen, C. Liu, Y. He, Z. Zhang, Efficiency enhancement of inverted polymer solar cells by doping NaYF4:Yb3+, Er3+ nanocomposites in PCDTBT:PCBM active layer. Sol. Energy Mater. Sol. Cells 124, 126–132 (2014)CrossRef
84.
go back to reference X. Chen, W. Xu, H. Song, C. Chen, H. Xia, Y. Zhu, D. Zhou, S. Cui, Q. Dai, J. Zhang, Highly efficient LiYF4:Yb3+, Er3+ upconversion single crystal under solar cell spectrum excitation and photovoltaic application. ACS Appl. Mater. Interfaces 8, 9071–9079 (2016)CrossRef X. Chen, W. Xu, H. Song, C. Chen, H. Xia, Y. Zhu, D. Zhou, S. Cui, Q. Dai, J. Zhang, Highly efficient LiYF4:Yb3+, Er3+ upconversion single crystal under solar cell spectrum excitation and photovoltaic application. ACS Appl. Mater. Interfaces 8, 9071–9079 (2016)CrossRef
85.
go back to reference M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, Z. Lin, Monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells. Angew. Chem. Int. Ed. 55, 4280–4284 (2016)CrossRef M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, Z. Lin, Monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells. Angew. Chem. Int. Ed. 55, 4280–4284 (2016)CrossRef
86.
go back to reference M. Que, W. Que, X. Yin, P. Chen, Y. Yang, J. Hu, B. Yu, Y. Du, Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light. Nanoscale 8, 14432–14437 (2016)CrossRef M. Que, W. Que, X. Yin, P. Chen, Y. Yang, J. Hu, B. Yu, Y. Du, Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light. Nanoscale 8, 14432–14437 (2016)CrossRef
87.
go back to reference J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, M. Chen, Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air. IEEE J. Photovoltaics 8, 132–136 (2018)CrossRef J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, M. Chen, Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air. IEEE J. Photovoltaics 8, 132–136 (2018)CrossRef
88.
go back to reference X. Lai, X. Li, X. Lv, Y.-Z. Zheng, F. Meng, X. Tao, Broadband dye-sensitized upconverting nanocrystals enabled near-infrared planar perovskite solar cells. J. Power Sources 372, 125–133 (2017)CrossRef X. Lai, X. Li, X. Lv, Y.-Z. Zheng, F. Meng, X. Tao, Broadband dye-sensitized upconverting nanocrystals enabled near-infrared planar perovskite solar cells. J. Power Sources 372, 125–133 (2017)CrossRef
Metadata
Title
Rare-Earth Ion-Based Photon Up-Conversion for Transmission-Loss Reduction in Solar Cells
Authors
Hai-Qiao Wang
Andres Osvet
Miroslaw Batentschuk
Christoph J. Brabec
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-70358-5_12