Skip to main content
Top

2024 | OriginalPaper | Chapter

2. Rational Construction of Molecular Electron-Conducting Nanowires Encapsulated in Proton-Conducting Matrix in a Charge-Transfer Salt

Author : Dr. Masaki Donoshita

Published in: Design of Crystal Structures Using Hydrogen Bonds on Molecular-Layered Cocrystals and Proton–Electron Mixed Conductor

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Insulated molecular wires have gained significant attention owing to their potential contribution to the fields of nanoelectronics and low-dimensional chemistry/physics. This study demonstrates, for the first time, the rational construction of molecular electron-conducting wires encapsulated in a proton-conducting matrix via the use of a molecular charge-transfer salt, which may pave the way for iono-electronics. As expected from the molecular structure of the newly designed complex anion (a propeller-shaped structure with hydrogen-bonding sites at four edges), a three-dimensional hydrogen-bonded framework was constructed within the crystal, which contained one-dimensional arrays of the electron donor, tetrathiafulvalene (TTF). Single-crystal crystallographic and spectroscopic studies clarified that non-stoichiometric deprotonation of anions and partial oxidation of TTF molecules occurred, whereas the anion was electronically inert. The moderate conductivities of electrons and protons were confirmed by DC- and AC-conductivity measurements. In addition, electronic isolation of the TTF wires was confirmed using magnetic susceptibility data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
5.
go back to reference Taylor PN, O’Connell MJ, McNeill LA, Hall MJ, Aplin RT, Anderson HL (2000) Angew Chem Int Ed 39:3456–3460CrossRef Taylor PN, O’Connell MJ, McNeill LA, Hall MJ, Aplin RT, Anderson HL (2000) Angew Chem Int Ed 39:3456–3460CrossRef
6.
go back to reference Cacialli F, Wilson JS, Michels JJ, Daniel C, Silva C, Friend RH, Severin N, Samori P, Rabe JP, O’Connell MJ, Taylor PN, Anderson HL (2002) Nat Mater 1:160–164CrossRefPubMed Cacialli F, Wilson JS, Michels JJ, Daniel C, Silva C, Friend RH, Severin N, Samori P, Rabe JP, O’Connell MJ, Taylor PN, Anderson HL (2002) Nat Mater 1:160–164CrossRefPubMed
8.
go back to reference MacLean MW, Kitao T, Suga T, Mizuno M, Seki S, Uemura T, Kitagawa S (2016) Angew Chem Int Ed 55:708–713CrossRef MacLean MW, Kitao T, Suga T, Mizuno M, Seki S, Uemura T, Kitagawa S (2016) Angew Chem Int Ed 55:708–713CrossRef
9.
11.
go back to reference van Nostrum CF, Picken SJ, Schouten A-J, Nolte RJM (2002) J Am Chem Soc 117:9957–9965CrossRef van Nostrum CF, Picken SJ, Schouten A-J, Nolte RJM (2002) J Am Chem Soc 117:9957–9965CrossRef
12.
go back to reference Chen J, Sun Y, Zhao W, Liu J, Fang J, Xu T, Chen D (2021) J Mater Chem C 9:3871–3881CrossRef Chen J, Sun Y, Zhao W, Liu J, Fang J, Xu T, Chen D (2021) J Mater Chem C 9:3871–3881CrossRef
14.
go back to reference Akutsu-Sato A, Akutsu H, Turner SS, Day P, Probert MR, Howard JAK, Akutagawa T, Takeda S, Nakamura T, Mori T (2005) Angew Chem Int Ed 117:296–299CrossRef Akutsu-Sato A, Akutsu H, Turner SS, Day P, Probert MR, Howard JAK, Akutagawa T, Takeda S, Nakamura T, Mori T (2005) Angew Chem Int Ed 117:296–299CrossRef
15.
16.
go back to reference Kobayashi Y, Fujii T, Terasaki I, Kino H, Jin Y, Hibino T, Kobayashi T, Nishibori E, Sawa H, Yoshikawa H, Terauchi T, Sumi S (2013) J Mater Chem A 1:5089–5096CrossRef Kobayashi Y, Fujii T, Terasaki I, Kino H, Jin Y, Hibino T, Kobayashi T, Nishibori E, Sawa H, Yoshikawa H, Terauchi T, Sumi S (2013) J Mater Chem A 1:5089–5096CrossRef
17.
go back to reference Ishiguro T, Yamaji K, Saito G (1998) In: Organic superconductors, 2nd ed. Springer, Heidelberg Ishiguro T, Yamaji K, Saito G (1998) In: Organic superconductors, 2nd ed. Springer, Heidelberg
18.
go back to reference Steed JW, Turner DR, Wallace K (eds) (2007) In: Core concepts in supramolecular chemistry and nanochemistry, Wiley, West Sussex Steed JW, Turner DR, Wallace K (eds) (2007) In: Core concepts in supramolecular chemistry and nanochemistry, Wiley, West Sussex
21.
go back to reference Anderson GK, Lin M (1990) Inorg Synth 28:60–63 Anderson GK, Lin M (1990) Inorg Synth 28:60–63
23.
26.
go back to reference Sheldrick GM (2014) Acta Cryst A70:C1437. SHELXT Version 2014/5 Sheldrick GM (2014) Acta Cryst A70:C1437. SHELXT Version 2014/5
27.
go back to reference Sheldrick GM (2008) Acta Cryst A64:112–122. SHELXL Version 2014/3 Sheldrick GM (2008) Acta Cryst A64:112–122. SHELXL Version 2014/3
28.
go back to reference Rigaku (2018) Crystal structure. Version 4.3. Rigaku Corporation, Tokyo, Japan Rigaku (2018) Crystal structure. Version 4.3. Rigaku Corporation, Tokyo, Japan
29.
go back to reference Mori T, Kobayashi A, Sasaki Y, Kobayashi H, Saito G, Inokuchi H (1984) Bull Chem Soc Jpn 57:627–633CrossRef Mori T, Kobayashi A, Sasaki Y, Kobayashi H, Saito G, Inokuchi H (1984) Bull Chem Soc Jpn 57:627–633CrossRef
30.
go back to reference Johnston DC, Troyer M, Miyahara S, Lidsky D, Ueda K, Azuma M, Hiroi Z, Takano M, Isobe M, Ueda Y, Korotin MA, Anisimov VI, Mahajan AV, Miller LL (2000). arXiv:con-mat/0001147 Johnston DC, Troyer M, Miyahara S, Lidsky D, Ueda K, Azuma M, Hiroi Z, Takano M, Isobe M, Ueda Y, Korotin MA, Anisimov VI, Mahajan AV, Miller LL (2000). arXiv:​con-mat/​0001147
31.
go back to reference X-ray structural analysis of a twinned crystal demonstrated that although each crystallite is properly aligned in the a-axis direction (direction of the TTF column), it is misaligned in the b- and c-axis directions (refer to the main text for the crystal structure and crystallographic axes) X-ray structural analysis of a twinned crystal demonstrated that although each crystallite is properly aligned in the a-axis direction (direction of the TTF column), it is misaligned in the b- and c-axis directions (refer to the main text for the crystal structure and crystallographic axes)
32.
go back to reference Grabowski SJ (ed) (2006) In: Hydrogen bonding—new insights. Springer, Dordrecht Grabowski SJ (ed) (2006) In: Hydrogen bonding—new insights. Springer, Dordrecht
34.
go back to reference Torrance JB, Scott BA, Welber B, Kaufman FB, Seiden PE (1979) Phys Rev B 19:730–741CrossRef Torrance JB, Scott BA, Welber B, Kaufman FB, Seiden PE (1979) Phys Rev B 19:730–741CrossRef
35.
36.
go back to reference Wudl F, Smith GM, Hufnagel EJ (1970) J Chem Soc Chem Commun 1453–1454 Wudl F, Smith GM, Hufnagel EJ (1970) J Chem Soc Chem Commun 1453–1454
37.
go back to reference Tanaka H, Kuroda S-I, Yamashita T, Mitsumi M, Toriumi K (2003) J Phys Soc Jpn 72:2169–2172CrossRef Tanaka H, Kuroda S-I, Yamashita T, Mitsumi M, Toriumi K (2003) J Phys Soc Jpn 72:2169–2172CrossRef
38.
go back to reference Bellitto C, Flamini A, Piovesana O, Zanazzi PF (1980) Inorg Chem 19:3632–3636CrossRef Bellitto C, Flamini A, Piovesana O, Zanazzi PF (1980) Inorg Chem 19:3632–3636CrossRef
39.
go back to reference Bellitto C, Dessy G, Fares V, Flamini A (1981) J Chem Soc Chem Commun 409–411 Bellitto C, Dessy G, Fares V, Flamini A (1981) J Chem Soc Chem Commun 409–411
40.
go back to reference Bellitto C, Bonamico M, Dessy G, Fares V, Flamini A (1986) J Chem Soc Dalton Trans 595–601 Bellitto C, Bonamico M, Dessy G, Fares V, Flamini A (1986) J Chem Soc Dalton Trans 595–601
42.
44.
45.
go back to reference Malti A, Edberg J, Granberg H, Khan ZU, Andreasen JW, Liu X, Zhao D, Zhang H, Yao Y, Brill JW, Engquist I, Fahlman M, Wagberg L, Crispin X, Berggren M (2016) Adv Sci 3:1500305CrossRef Malti A, Edberg J, Granberg H, Khan ZU, Andreasen JW, Liu X, Zhao D, Zhang H, Yao Y, Brill JW, Engquist I, Fahlman M, Wagberg L, Crispin X, Berggren M (2016) Adv Sci 3:1500305CrossRef
46.
go back to reference Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) Nat Mater 10:682–686CrossRefPubMed Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) Nat Mater 10:682–686CrossRefPubMed
49.
go back to reference Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) Solid State Commun 86:689–693CrossRef Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) Solid State Commun 86:689–693CrossRef
51.
go back to reference Krogh Andersen E, Krogh Andersen IG, Knkkergardård Møller C, Simonsen KE, Skou E (1982) Solid State Ionics 7:301–306 Krogh Andersen E, Krogh Andersen IG, Knkkergardård Møller C, Simonsen KE, Skou E (1982) Solid State Ionics 7:301–306
52.
go back to reference The –OH concentration for (TTF)2(1-H6+δ) was calculated assuming the formula (TTF)2(1-H6) and the cell volume at 298 K (Table 2.1) The –OH concentration for (TTF)2(1-H6+δ) was calculated assuming the formula (TTF)2(1-H6) and the cell volume at 298 K (Table 2.1)
53.
go back to reference The saturation magnetic moment of ferromagnetic component was ~40 emu Oe mol−1, where one mole is defined as a gram-formula weight of (TTF)2(1-H6) The saturation magnetic moment of ferromagnetic component was ~40 emu Oe mol−1, where one mole is defined as a gram-formula weight of (TTF)2(1-H6)
54.
55.
go back to reference A comparison between the fitting results using the alternating chain model and the two-leg ladder model is presented in Section 2.2 (Figs. 2.2 and 2.3) A comparison between the fitting results using the alternating chain model and the two-leg ladder model is presented in Section 2.2 (Figs. 2.2 and 2.3)
56.
go back to reference Mori T (2016) In: Electronic properties of organic conductors, Springer Japan, Tokyo, pp 198–204 Mori T (2016) In: Electronic properties of organic conductors, Springer Japan, Tokyo, pp 198–204
Metadata
Title
Rational Construction of Molecular Electron-Conducting Nanowires Encapsulated in Proton-Conducting Matrix in a Charge-Transfer Salt
Author
Dr. Masaki Donoshita
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-7062-9_2

Premium Partners