Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

03-04-2020 | Research Article-Electrical Engineering | Issue 8/2020

Arabian Journal for Science and Engineering 8/2020

RDA-UNET-WGAN: An Accurate Breast Ultrasound Lesion Segmentation Using Wasserstein Generative Adversarial Networks

Journal:
Arabian Journal for Science and Engineering > Issue 8/2020
Authors:
Anuja Negi, Alex Noel Joseph Raj, Ruban Nersisson, Zhemin Zhuang, M Murugappan

Abstract

Early-stage detection of lesions is the best possible way to fight breast cancer, a disease with the highest malignancy ratio among women. Though several methods primarily based on deep learning have been proposed for tumor segmentation, it is still a challenging problem due to false positives and the precise boundary detection required for segmentation. In this paper, we propose a Generative Adversarial Network (GAN) based algorithm for segmenting the tumor in Breast Ultrasound images. The GAN model comprises of two modules: generator and discriminator. Residual-Dilated-Attention-Gate-UNet (RDAU-NET) is used as the generator which serves as a segmentation module and a CNN classifier is employed as the discriminator. To stabilize training, Wasserstein GAN (WGAN) algorithm has been used. The proposed hybrid deep learning model is called the WGAN-RDA-UNET. The model is assessed with several quantitative metrics and is also compared with existing methods both quantitatively and qualitatively. The overall Accuracy, PR-AUC, ROC-AUC and F1-score achieved were 0.98, 0.95, 0.89 and 0.88 respectively which are better than most conventional deep net models. The results also showcase the shortcomings of CNN, RDA U-Net and other models and how they can be rectified using the WGAN-RDA-UNET model.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

Arabian Journal for Science and Engineering 8/2020 Go to the issue

Research Article-Computer Engineering and Computer Science

Intelligent Analysis of Arabic Tweets for Detection of Suspicious Messages

Premium Partners

    Image Credits