Skip to main content
Top

12-02-2025 | Regular Paper

RDPNet: a multi-stage summary generation network for long chat dialogues

Authors: Shihao Yang, Shaoru Zhang, Huayu Zhang, Chih-Cheng Hung, Fengqin Yang, Shuhua Liu

Published in: Knowledge and Information Systems

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the rapid development of human–computer interaction and natural language generation technology, chat dialogue summarization has attracted extensive attention from researchers, which aims to obtain significant information from chat history. The current chat dialogue summary models mainly focus on short dialogues due to the limitation of input text length. This paper proposes a RDPNet model, an effective multi-stage network for long chat dialogues. The method first uses a Retriever to select significant sentences from the long input dialogue, which not only can shorten the length of the source text, but also improve the structure of the chat. Secondly, a DialoGPT annotator is adopted to label the extracted important sentences so that it can further improve the structure of the dialogue. Finally, a large-scale pre-trained generation model ProphetNet is adopted to generate a concise dialogue summary. The experimental results demonstrate that RDPNet outperforms the state-of-the-art methods on three long chat summarization datasets DIALSUMM, SAMSum and TWEETSUMM and verify the effectiveness for long chat summarization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gurevych I, Strube M (2004) Semantic similarity applied to spoken dialogue summarization. In: COLING 2004: proceedings of the 20th international conference on computational linguistics, pp. 764–770 Gurevych I, Strube M (2004) Semantic similarity applied to spoken dialogue summarization. In: COLING 2004: proceedings of the 20th international conference on computational linguistics, pp. 764–770
2.
go back to reference Shang G, Ding W, Zhang Z, Tixier A, Meladianos P, Vazirgiannis M, Lorré J-P (2018) Unsupervised abstractive meeting summarization with multi-sentence compression and budgeted submodular maximization. In: Proceedings of the 56th annual meeting of the association for computational linguistics (Volume 1: Long Papers), pp. 664–674 Shang G, Ding W, Zhang Z, Tixier A, Meladianos P, Vazirgiannis M, Lorré J-P (2018) Unsupervised abstractive meeting summarization with multi-sentence compression and budgeted submodular maximization. In: Proceedings of the 56th annual meeting of the association for computational linguistics (Volume 1: Long Papers), pp. 664–674
3.
go back to reference Liu C, Wang P, Xu J, Li Z, Ye J (2019) Automatic dialogue summary generation for customer service. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 1957–1965 Liu C, Wang P, Xu J, Li Z, Ye J (2019) Automatic dialogue summary generation for customer service. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 1957–1965
4.
go back to reference Gliwa B, Mochol I, Biesek M, Wawer A (2019) Samsum corpus: a human-annotated dialogue dataset for abstractive summarization. In: Proceedings of the 2nd workshop on new frontiers in summarization, pp. 70–79 Gliwa B, Mochol I, Biesek M, Wawer A (2019) Samsum corpus: a human-annotated dialogue dataset for abstractive summarization. In: Proceedings of the 2nd workshop on new frontiers in summarization, pp. 70–79
5.
go back to reference Goo C-W, Chen Y-N (2018) Abstractive dialogue summarization with sentence-gated modeling optimized by dialogue acts. In: 2018 IEEE Spoken language technology workshop (SLT), pp. 735–742 . IEEE Goo C-W, Chen Y-N (2018) Abstractive dialogue summarization with sentence-gated modeling optimized by dialogue acts. In: 2018 IEEE Spoken language technology workshop (SLT), pp. 735–742 . IEEE
6.
go back to reference Chen J, Yang D (2020) Multi-view sequence-to-sequence models with conversational structure for abstractive dialogue summarization. In: Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP), pp. 4106–4118 Chen J, Yang D (2020) Multi-view sequence-to-sequence models with conversational structure for abstractive dialogue summarization. In: Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP), pp. 4106–4118
7.
go back to reference Wu C-S, Liu L, Liu W, Stenetorp P, Xiong C (2021) Controllable abstractive dialogue summarization with sketch supervision. Find Assoc Comput Linguist: ACL-IJCNLP 2021:5108–5122MATH Wu C-S, Liu L, Liu W, Stenetorp P, Xiong C (2021) Controllable abstractive dialogue summarization with sketch supervision. Find Assoc Comput Linguist: ACL-IJCNLP 2021:5108–5122MATH
8.
go back to reference Lei Y, Yan Y, Zeng Z, He K, Zhang X, Xu W (2021) Hierarchical speaker-aware sequence-to-sequence model for dialogue summarization. In: ICASSP 2021-2021 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 7823–7827 . IEEE Lei Y, Yan Y, Zeng Z, He K, Zhang X, Xu W (2021) Hierarchical speaker-aware sequence-to-sequence model for dialogue summarization. In: ICASSP 2021-2021 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 7823–7827 . IEEE
9.
go back to reference Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need.(nips), 2017. arXiv preprint arXiv:1706.03762 10, 0140525–16001837 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need.(nips), 2017. arXiv preprint arXiv:​1706.​03762 10, 0140525–16001837
11.
go back to reference Zaheer M, Guruganesh G, Dubey A, Ainslie J, Alberti C, Ontanon S, Pham P, Ravula A, Wang Q, Yang L, et al.: (2020) Big bird: transformers for longer sequences. In: Proceedings of the 34th international conference on neural information processing systems, pp. 17283–17297 Zaheer M, Guruganesh G, Dubey A, Ainslie J, Alberti C, Ontanon S, Pham P, Ravula A, Wang Q, Yang L, et al.: (2020) Big bird: transformers for longer sequences. In: Proceedings of the 34th international conference on neural information processing systems, pp. 17283–17297
12.
go back to reference Zhang Y, Ni A, Yu T, Zhang R, Zhu C, Deb B, Celikyilmaz A, Awadallah AH, Radev D (2021) An exploratory study on long dialogue summarization: What works and what’s next. In: 2021 Findings of the association for computational linguistics, findings of ACL: EMNLP 2021, pp. 4426–4433 . Association for Computational Linguistics (ACL) Zhang Y, Ni A, Yu T, Zhang R, Zhu C, Deb B, Celikyilmaz A, Awadallah AH, Radev D (2021) An exploratory study on long dialogue summarization: What works and what’s next. In: 2021 Findings of the association for computational linguistics, findings of ACL: EMNLP 2021, pp. 4426–4433 . Association for Computational Linguistics (ACL)
13.
14.
go back to reference Feng X, Feng X, Qin L, Qin B, Liu T (2021) Language model as an annotator: exploring dialogpt for dialogue summarization. In: Proceedings of the 59th annual meeting of the association for computational linguistics and the 11th international joint conference on natural language processing (Volume 1: Long Papers), pp. 1479–1491 Feng X, Feng X, Qin L, Qin B, Liu T (2021) Language model as an annotator: exploring dialogpt for dialogue summarization. In: Proceedings of the 59th annual meeting of the association for computational linguistics and the 11th international joint conference on natural language processing (Volume 1: Long Papers), pp. 1479–1491
15.
go back to reference Qi W, Yan Y, Gong Y, Liu D, Duan N, Chen J, Zhang R, Zhou M (2020) Prophetnet: predicting future n-gram for sequence-to-sequencepre-training. Find Assoc Comput Linguist: EMNLP 2020:2401–2410MATH Qi W, Yan Y, Gong Y, Liu D, Duan N, Chen J, Zhang R, Zhou M (2020) Prophetnet: predicting future n-gram for sequence-to-sequencepre-training. Find Assoc Comput Linguist: EMNLP 2020:2401–2410MATH
16.
17.
go back to reference Chen Y, Liu Y, Chen L, Zhang Y (2021) Dialogsum: a real-life scenario dialogue summarization dataset. Find Assoc Comput Linguist: ACL-IJCNLP 2021:5062–5074MATH Chen Y, Liu Y, Chen L, Zhang Y (2021) Dialogsum: a real-life scenario dialogue summarization dataset. Find Assoc Comput Linguist: ACL-IJCNLP 2021:5062–5074MATH
19.
go back to reference Paice CD (1990) Constructing literature abstracts by computer: techniques and prospects. Inform Process Manag 26(1):171–186CrossRefMATH Paice CD (1990) Constructing literature abstracts by computer: techniques and prospects. Inform Process Manag 26(1):171–186CrossRefMATH
20.
go back to reference See A, Liu PJ, Manning CD (2017) Get to the point: Summarization with pointer-generator networks. In: Proceedings of the 55th annual meeting of the association for computational linguistics (Volume 1: Long Papers), pp. 1073–1083 See A, Liu PJ, Manning CD (2017) Get to the point: Summarization with pointer-generator networks. In: Proceedings of the 55th annual meeting of the association for computational linguistics (Volume 1: Long Papers), pp. 1073–1083
21.
go back to reference Cohan A, Dernoncourt F, Kim DS, Bui T, Kim S, Chang W, Goharian N (2018) A discourse-aware attention model for abstractive summarization of long documents. In: Proceedings of the 2018 conference of the north american chapter of the association for computational linguistics: human language technologies, Volume 2 (Short Papers), pp. 615–621 Cohan A, Dernoncourt F, Kim DS, Bui T, Kim S, Chang W, Goharian N (2018) A discourse-aware attention model for abstractive summarization of long documents. In: Proceedings of the 2018 conference of the north american chapter of the association for computational linguistics: human language technologies, Volume 2 (Short Papers), pp. 615–621
22.
go back to reference Riedhammer K, Favre B, Hakkani-Tur D (2008) A keyphrase based approach to interactive meeting summarization. In: 2008 IEEE Spoken language technology workshop, pp. 153–156 . IEEE Riedhammer K, Favre B, Hakkani-Tur D (2008) A keyphrase based approach to interactive meeting summarization. In: 2008 IEEE Spoken language technology workshop, pp. 153–156 . IEEE
23.
go back to reference Liu F, Liu Y (2010) Exploring speaker characteristics for meeting summarization. In: INTERSPEECH, pp. 2518–2521 Liu F, Liu Y (2010) Exploring speaker characteristics for meeting summarization. In: INTERSPEECH, pp. 2518–2521
24.
go back to reference Zhu C, Xu R, Zeng M, Huang X (2020) A hierarchical network for abstractive meeting summarization with cross-domain pretraining. Find Assoc Comput Linguist: EMNLP 2020:194–203MATH Zhu C, Xu R, Zeng M, Huang X (2020) A hierarchical network for abstractive meeting summarization with cross-domain pretraining. Find Assoc Comput Linguist: EMNLP 2020:194–203MATH
25.
go back to reference Zhang Y, Ni A, Yu T, Zhang R, Zhu C, Deb B, Celikyilmaz A, Awadallah AH, Radev D (2021) An exploratory study on long dialogue summarization: What works and what’s next. In: 2021 Findings of the association for computational linguistics, findings of ACL: EMNLP 2021, pp. 4426–4433 . Association for Computational Linguistics (ACL) Zhang Y, Ni A, Yu T, Zhang R, Zhu C, Deb B, Celikyilmaz A, Awadallah AH, Radev D (2021) An exploratory study on long dialogue summarization: What works and what’s next. In: 2021 Findings of the association for computational linguistics, findings of ACL: EMNLP 2021, pp. 4426–4433 . Association for Computational Linguistics (ACL)
26.
go back to reference Zhong M, Liu Y, Xu Y, Zhu C, Zeng M (2022) Dialoglm: pre-trained model for long dialogue understanding and summarization. Proc AAAI Conf Artif Intell 36:11765–11773 Zhong M, Liu Y, Xu Y, Zhu C, Zeng M (2022) Dialoglm: pre-trained model for long dialogue understanding and summarization. Proc AAAI Conf Artif Intell 36:11765–11773
27.
go back to reference Tay Y, Bahri D, Yang L, Metzler D, Juan D-C (2020) Sparse sinkhorn attention. In: International conference on machine learning, pp. 9438–9447 . PMLR Tay Y, Bahri D, Yang L, Metzler D, Juan D-C (2020) Sparse sinkhorn attention. In: International conference on machine learning, pp. 9438–9447 . PMLR
28.
go back to reference Zhang Y, Ni A, Mao Z, Wu CH, Zhu C, Deb B, Awadallah AH, Radev D, Zhang R (2022) Summn: A multi-stage summarization framework for long input dialogues and documents. In: 60th annual meeting of the association for computational linguistics, ACL 2022, pp. 1592–1604 . Association for Computational Linguistics (ACL) Zhang Y, Ni A, Mao Z, Wu CH, Zhu C, Deb B, Awadallah AH, Radev D, Zhang R (2022) Summn: A multi-stage summarization framework for long input dialogues and documents. In: 60th annual meeting of the association for computational linguistics, ACL 2022, pp. 1592–1604 . Association for Computational Linguistics (ACL)
29.
go back to reference Zhao L, Xu W, Guo J (2020) Improving abstractive dialogue summarization with graph structures and topic words. In: Proceedings of the 28th international conference on computational linguistics, pp. 437–449 Zhao L, Xu W, Guo J (2020) Improving abstractive dialogue summarization with graph structures and topic words. In: Proceedings of the 28th international conference on computational linguistics, pp. 437–449
30.
go back to reference Feng X, Feng X, Qin B (2021) Incorporating commonsense knowledge into abstractive dialogue summarization via heterogeneous graph networks. In: China national conference on chinese computational linguistics, pp. 127–142 . Springer Feng X, Feng X, Qin B (2021) Incorporating commonsense knowledge into abstractive dialogue summarization via heterogeneous graph networks. In: China national conference on chinese computational linguistics, pp. 127–142 . Springer
31.
go back to reference Liu Z, Shi K, Chen N (2021) Coreference-aware dialogue summarization. In: Proceedings of the 22nd annual meeting of the special interest group on discourse and dialogue, pp. 509–519 Liu Z, Shi K, Chen N (2021) Coreference-aware dialogue summarization. In: Proceedings of the 22nd annual meeting of the special interest group on discourse and dialogue, pp. 509–519
33.
go back to reference Cho K, Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using rnn encoder–decoder for statistical machine translation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp. 1724–1734 Cho K, Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using rnn encoder–decoder for statistical machine translation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp. 1724–1734
34.
go back to reference Li M, Zhang L, Ji H, Radke RJ (2019) Keep meeting summaries on topic: Abstractive multi-modal meeting summarization. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp. 2190–2196 Li M, Zhang L, Ji H, Radke RJ (2019) Keep meeting summaries on topic: Abstractive multi-modal meeting summarization. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp. 2190–2196
35.
go back to reference Manakul P, Gales M 2021) Long-span summarization via local attention and content selection. In: Proceedings of the 59th annual meeting of the association for computational linguistics and the 11th international joint conference on natural language processing (Volume 1: Long Papers), pp. 6026–6041 ( Manakul P, Gales M 2021) Long-span summarization via local attention and content selection. In: Proceedings of the 59th annual meeting of the association for computational linguistics and the 11th international joint conference on natural language processing (Volume 1: Long Papers), pp. 6026–6041 (
38.
go back to reference Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ (2020) Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res 21(140):1–67MathSciNet Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ (2020) Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res 21(140):1–67MathSciNet
39.
go back to reference Zhang J, Zhao Y, Saleh M, Liu P (2020) Pegasus: pre-training with extracted gap-sentences for abstractive summarization. In: International conference on machine learning, pp. 11328–11339 . PMLR Zhang J, Zhao Y, Saleh M, Liu P (2020) Pegasus: pre-training with extracted gap-sentences for abstractive summarization. In: International conference on machine learning, pp. 11328–11339 . PMLR
41.
go back to reference Park S, Shin D, Lee J (2022) Leveraging non-dialogue summaries for dialogue summarization. In: Dernoncourt F, Nguyen TH, Lai VD, Veyseh APB, Bui TH, Yoon DS (eds.) Proceedings of the first workshop on transcript understanding, pp. 1–7. International conference on computational linguistics, Gyeongju, South Korea . https://aclanthology.org/2022.tu-1.1 Park S, Shin D, Lee J (2022) Leveraging non-dialogue summaries for dialogue summarization. In: Dernoncourt F, Nguyen TH, Lai VD, Veyseh APB, Bui TH, Yoon DS (eds.) Proceedings of the first workshop on transcript understanding, pp. 1–7. International conference on computational linguistics, Gyeongju, South Korea . https://​aclanthology.​org/​2022.​tu-1.​1
43.
go back to reference Xie K, He D, Zhuang J, Lu S, Wang Z (2022) View dialogue in 2D: a two-stream model in time-speaker perspective for dialogue summarization and beyond. In: Calzolari N, Huang C-R, Kim H, Pustejovsky J, Wanner L, Choi K-S, Ryu P-M, Chen H-H, Donatelli L, Ji H, Kurohashi S, Paggio P, Xue N, Kim S, Hahm Y, He Z, Lee TK, Santus E, Bond F, Na S-H (eds.) Proceedings of the 29th international conference on computational linguistics, pp. 6075–6088. International committee on computational linguistics, Gyeongju, Republic of Korea . https://aclanthology.org/2022.coling-1.531 Xie K, He D, Zhuang J, Lu S, Wang Z (2022) View dialogue in 2D: a two-stream model in time-speaker perspective for dialogue summarization and beyond. In: Calzolari N, Huang C-R, Kim H, Pustejovsky J, Wanner L, Choi K-S, Ryu P-M, Chen H-H, Donatelli L, Ji H, Kurohashi S, Paggio P, Xue N, Kim S, Hahm Y, He Z, Lee TK, Santus E, Bond F, Na S-H (eds.) Proceedings of the 29th international conference on computational linguistics, pp. 6075–6088. International committee on computational linguistics, Gyeongju, Republic of Korea . https://​aclanthology.​org/​2022.​coling-1.​531
44.
go back to reference Dubey A, Jauhri A, Pandey A, Kadian A, Al-Dahle A, Letman A, Mathur A, Schelten A, Yang A, Fan A, et al (2024) The llama 3 herd of models. arXiv preprint arXiv:2407.21783 Dubey A, Jauhri A, Pandey A, Kadian A, Al-Dahle A, Letman A, Mathur A, Schelten A, Yang A, Fan A, et al (2024) The llama 3 herd of models. arXiv preprint arXiv:​2407.​21783
48.
go back to reference Duan J, Lu F, Liu J (2024) Prophecy distillation for boosting abstractive summarization. In: Calzolari N, Kan M-Y, Hoste V, Lenci A, Sakti S, Xue N (eds.) Proceedings of the 2024 joint international conference on computational linguistics, language resources and evaluation (LREC-COLING 2024), pp. 13257–13268. ELRA and ICCL, Torino, Italia . https://aclanthology.org/2024.lrec-main.1160 Duan J, Lu F, Liu J (2024) Prophecy distillation for boosting abstractive summarization. In: Calzolari N, Kan M-Y, Hoste V, Lenci A, Sakti S, Xue N (eds.) Proceedings of the 2024 joint international conference on computational linguistics, language resources and evaluation (LREC-COLING 2024), pp. 13257–13268. ELRA and ICCL, Torino, Italia . https://​aclanthology.​org/​2024.​lrec-main.​1160
49.
go back to reference Li Y, Peng B, He P Galley M, Yu Z, Gao J (2023) Dionysus: A pre-trained model for low-resource dialogue summarization. In: Proceedings of the 61st annual meeting of the association for computational linguistics (Volume 1: Long Papers), pp. 1368–1386 Li Y, Peng B, He P Galley M, Yu Z, Gao J (2023) Dionysus: A pre-trained model for low-resource dialogue summarization. In: Proceedings of the 61st annual meeting of the association for computational linguistics (Volume 1: Long Papers), pp. 1368–1386
50.
go back to reference Park S, Choi H, Choi D, Lee H (2024) Gendex: generative data augmentation strategy leveraging external data for abstractive dialogue summarization. Find Assoc Comput Linguist ACL 2024:3171–3185MATH Park S, Choi H, Choi D, Lee H (2024) Gendex: generative data augmentation strategy leveraging external data for abstractive dialogue summarization. Find Assoc Comput Linguist ACL 2024:3171–3185MATH
51.
go back to reference Yoo C, Lee H (2023) Improving abstractive dialogue summarization using keyword extraction. Appl Sci 13(17):9771CrossRef Yoo C, Lee H (2023) Improving abstractive dialogue summarization using keyword extraction. Appl Sci 13(17):9771CrossRef
Metadata
Title
RDPNet: a multi-stage summary generation network for long chat dialogues
Authors
Shihao Yang
Shaoru Zhang
Huayu Zhang
Chih-Cheng Hung
Fengqin Yang
Shuhua Liu
Publication date
12-02-2025
Publisher
Springer London
Published in
Knowledge and Information Systems
Print ISSN: 0219-1377
Electronic ISSN: 0219-3116
DOI
https://doi.org/10.1007/s10115-025-02358-w

Premium Partner