Skip to main content
Top
Published in:

24-04-2023

Re-Thinking the Organization of Cortico-Basal Ganglia-Thalamo-Cortical Loops

Authors: Javier Baladron, Fred H. Hamker

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

First concepts of cortex-basal ganglia interactions suggested that cognitive functions are implemented through different parallel, segregated cortico-basal ganglia-cortical loops. Recent evidence however shows that there are at least 4 ways by which different loops could interact: overlapping cortico-pallidal projections, overlapping cortico-striatal projections, striato-nigro-striatal spirals, and cortico-thalamo-striatal projections. We propose that current evidence, if incorporated into neuro-computational models, provides new avenues for explaining cognitive functions. Using a recently introduced hierarchical neuro-computational model of multiple cortico-basal ganglia-cortical loops, we exemplify how interaction between loops can explain behavioral data linked to the ideomotor theory. During training of a stimulus–response task, a task-irrelevant tone is played after each action. Then, during a test period, the same tones are played but together with the stimuli. The model learns a distributed representation of action outcomes which is then used to select actions. Similar to observations in human subjects, the model’s response time is larger if an inconsistent tone (previously listened together with an alternative action) is played with the stimulus. Understanding the function of different communication strategies between loops could be the key to fully unravel the neural basis of the numerous functions supported by the basal ganglia. The multiple-loop structure allows for a more complex representation of behavior in which action outcomes are considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lecciso F, Colombo B. Beyond the cortico-centric models of cognition: the role of subcortical functioning in neurodevelopmental disorders. Front Psychol. 2019. Lecciso F, Colombo B. Beyond the cortico-centric models of cognition: the role of subcortical functioning in neurodevelopmental disorders. Front Psychol. 2019.
2.
go back to reference Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–75.CrossRef Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–75.CrossRef
3.
go back to reference DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13:281–5.CrossRef DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13:281–5.CrossRef
4.
go back to reference Helie S, Chakravarthy S, Moustafa AA. Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models. Front Comput Neurosci. 2013. Helie S, Chakravarthy S, Moustafa AA. Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models. Front Comput Neurosci. 2013.
6.
go back to reference Alexander GE, DeLong MR, Strick LP. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.CrossRef Alexander GE, DeLong MR, Strick LP. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.CrossRef
7.
go back to reference Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13:266–70.CrossRef Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13:266–70.CrossRef
8.
go back to reference Hoover JE, Strick PL. Multiple output channels in the basal ganglia. Science. 1993;259:819–21.CrossRef Hoover JE, Strick PL. Multiple output channels in the basal ganglia. Science. 1993;259:819–21.CrossRef
9.
go back to reference Seger CA. The involvement of corticostriatal loops in learning across tasks, species, and methodologies. In: Groenewegen H., Voorn P., Berendse H., Mulder A., Cools A. (eds) The Basal Ganglia IX. Advances in Behavioral Biology, vol 58. Springer, New York. 2009. Seger CA. The involvement of corticostriatal loops in learning across tasks, species, and methodologies. In: Groenewegen H., Voorn P., Berendse H., Mulder A., Cools A. (eds) The Basal Ganglia IX. Advances in Behavioral Biology, vol 58. Springer, New York. 2009.
10.
go back to reference Deschenes M, Veinante P, Zhang ZW. The organization of corticothalamic projections: reciprocity versus parity. Brain Res Reviews. 1998;18:286–308.CrossRef Deschenes M, Veinante P, Zhang ZW. The organization of corticothalamic projections: reciprocity versus parity. Brain Res Reviews. 1998;18:286–308.CrossRef
11.
go back to reference Schroll H, Hamker FH. Computational models of basal-ganglia pathway functions: focus on functional neuroanatomy. Front Syst Neurosci. 2013. Schroll H, Hamker FH. Computational models of basal-ganglia pathway functions: focus on functional neuroanatomy. Front Syst Neurosci. 2013.
12.
go back to reference Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nat Rev Neurosci. 2006;7(6):464–76.CrossRef Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nat Rev Neurosci. 2006;7(6):464–76.CrossRef
13.
go back to reference Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, Agid Y, DeLong MR, Obeso JA. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci. 2010;11:760–7720.CrossRef Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, Agid Y, DeLong MR, Obeso JA. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci. 2010;11:760–7720.CrossRef
14.
go back to reference Miller KJ, Shenhav A, Ludvig EA. Habits without values. Psychol Rev. 2019;126:292–311.CrossRef Miller KJ, Shenhav A, Ludvig EA. Habits without values. Psychol Rev. 2019;126:292–311.CrossRef
15.
go back to reference Daw ND, Niv Y, Dayan P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci. 2005;8(12):1704–11.CrossRef Daw ND, Niv Y, Dayan P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci. 2005;8(12):1704–11.CrossRef
16.
go back to reference Miller K, Ludvig EA, Pezzulo G, Shenhav A. Realigning models of habitual and goal-directed decision-making. In: Morris R, Bornstein A, Shenhav A, editors. Goal-directed decision making. London: Academic. 2018;407–428. Miller K, Ludvig EA, Pezzulo G, Shenhav A. Realigning models of habitual and goal-directed decision-making. In: Morris R, Bornstein A, Shenhav A, editors. Goal-directed decision making. London: Academic. 2018;407–428.
17.
go back to reference Doll BB, Simon DA, Daw ND. The ubiquity of model-based reinforcement learning. Curr Opin Neurobiol. 2012;12:1075–81.CrossRef Doll BB, Simon DA, Daw ND. The ubiquity of model-based reinforcement learning. Curr Opin Neurobiol. 2012;12:1075–81.CrossRef
18.
go back to reference Lopez-Paniagua D, Seger C. Interactions within and between corticostriatal loops during component processes of category learning. J Cogn Neurosci. 2011;23(10):3068–83.CrossRef Lopez-Paniagua D, Seger C. Interactions within and between corticostriatal loops during component processes of category learning. J Cogn Neurosci. 2011;23(10):3068–83.CrossRef
19.
go back to reference Dayan P. Improving generalization for temporal difference learning: the successor representation. Neural Comput. 1993;5:613–24.CrossRef Dayan P. Improving generalization for temporal difference learning: the successor representation. Neural Comput. 1993;5:613–24.CrossRef
20.
go back to reference Momennejad I, Russek EM, Cheong JH, Botvinick MM, Daw ND, Gershman SJ. The successor representation in human reinforcement learning. Nat Hum Behav. 2017;1(9):680–92.CrossRef Momennejad I, Russek EM, Cheong JH, Botvinick MM, Daw ND, Gershman SJ. The successor representation in human reinforcement learning. Nat Hum Behav. 2017;1(9):680–92.CrossRef
21.
go back to reference Rusu SI, Pennartz CMA. Learning, memory and consolidation mechanisms for behavioral control in hierarchically organized cortico-basal ganglia systems. Hippocampus. 2020;30(1):73–98.CrossRef Rusu SI, Pennartz CMA. Learning, memory and consolidation mechanisms for behavioral control in hierarchically organized cortico-basal ganglia systems. Hippocampus. 2020;30(1):73–98.CrossRef
22.
go back to reference Baldassarre G., Caligiore D., Mannella F. The hierarchical organisation of cortical and basal-ganglia systems: a computationally-informed review and integrated hypothesis. In: Baldassarre G., Mirolli M. (eds) Computational and Robotic Models of the Hierarchical Organization of Behavior. Springer, Berlin, Heidelberg. 2013. Baldassarre G., Caligiore D., Mannella F. The hierarchical organisation of cortical and basal-ganglia systems: a computationally-informed review and integrated hypothesis. In: Baldassarre G., Mirolli M. (eds) Computational and Robotic Models of the Hierarchical Organization of Behavior. Springer, Berlin, Heidelberg. 2013.
23.
go back to reference Dezfouli A, Balleine BW. Actions, action sequences and habits: evidence that goal-directed and habitual action control are hierarchically organized. PLoS Comput Biol. 2013;9(12). Dezfouli A, Balleine BW. Actions, action sequences and habits: evidence that goal-directed and habitual action control are hierarchically organized. PLoS Comput Biol. 2013;9(12).
24.
go back to reference Yin HH. The basal ganglia and hierarchical control in voluntary behavior. In: Soghomonian JJ, editor. The Basal Ganglia novel perspectives on motor and cognitive functions. Basel, Switzerland: Springer; 2016. p. 513–66.CrossRef Yin HH. The basal ganglia and hierarchical control in voluntary behavior. In: Soghomonian JJ, editor. The Basal Ganglia novel perspectives on motor and cognitive functions. Basel, Switzerland: Springer; 2016. p. 513–66.CrossRef
25.
go back to reference Merel J, Botvinick M, Wayne G. Hierarchical motor control in mammals and machines. Nat Commun. 2019;10. Merel J, Botvinick M, Wayne G. Hierarchical motor control in mammals and machines. Nat Commun. 2019;10.
26.
go back to reference Badre D, Nee DE. Frontal cortex and the hierarchical control of behavior. Trends Cogn Sci. 2018;22(2):170–88.CrossRef Badre D, Nee DE. Frontal cortex and the hierarchical control of behavior. Trends Cogn Sci. 2018;22(2):170–88.CrossRef
27.
go back to reference Badre D, D’Esposito M. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J Cogn Neurosci. 2007;19(12):2082–99.CrossRef Badre D, D’Esposito M. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J Cogn Neurosci. 2007;19(12):2082–99.CrossRef
28.
go back to reference Joel D, Weiner I. The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience. 1994;63(2):363–79.CrossRef Joel D, Weiner I. The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience. 1994;63(2):363–79.CrossRef
29.
go back to reference Draganski B, Kherif F, Klöppel S, Cook PA, Alexander DC, Parker GJ, Frackowiak RS. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci. 2008;28(28):7143–7152. Draganski B, Kherif F, Klöppel S, Cook PA, Alexander DC, Parker GJ, Frackowiak RS. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci. 2008;28(28):7143–7152.
30.
go back to reference Averbeck BB, Lehman J, Jacobson M, Haber SN. Estimates of projection overlap and zones of convergence within frontal-striatal circuits. J Neurosci. 2014;34(29):9497–505.CrossRef Averbeck BB, Lehman J, Jacobson M, Haber SN. Estimates of projection overlap and zones of convergence within frontal-striatal circuits. J Neurosci. 2014;34(29):9497–505.CrossRef
31.
go back to reference Aarts E, van Holstein M, Cools R. Striatal dopamine and the interface between motivation and cognition. Front Psychol. 2011. Aarts E, van Holstein M, Cools R. Striatal dopamine and the interface between motivation and cognition. Front Psychol. 2011.
32.
go back to reference Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20(6):2369–82.CrossRef Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20(6):2369–82.CrossRef
33.
go back to reference Ikeda H, Saigusa T, Kamei J, Koshikawa N, Cools AR. Spiraling dopaminergic circuitry from the ventral striatum to dorsal striatum is an effective feed-forward loop. Neuroscience. 2013;241:126–34.CrossRef Ikeda H, Saigusa T, Kamei J, Koshikawa N, Cools AR. Spiraling dopaminergic circuitry from the ventral striatum to dorsal striatum is an effective feed-forward loop. Neuroscience. 2013;241:126–34.CrossRef
34.
go back to reference Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci. 2011;34:441–66.CrossRef Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci. 2011;34:441–66.CrossRef
35.
go back to reference McFarland NR, Haber SN. Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci. 2000;20:3798–813.CrossRef McFarland NR, Haber SN. Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci. 2000;20:3798–813.CrossRef
36.
go back to reference Haber SN, Calzavara R. The cortico-basal ganglia integrative network: The role of the thalamus. Brain Res Bull. 2009;68:69–74.CrossRef Haber SN, Calzavara R. The cortico-basal ganglia integrative network: The role of the thalamus. Brain Res Bull. 2009;68:69–74.CrossRef
37.
go back to reference McFarland NR, Haber SN. Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci. 2002;22:8117–32.CrossRef McFarland NR, Haber SN. Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci. 2002;22:8117–32.CrossRef
38.
go back to reference Baladron J, Hamker FH. Habit learning in hierarchical cortex - basal ganglia loops. Eur J Neurosci. 2020;52(12):4613–38.CrossRef Baladron J, Hamker FH. Habit learning in hierarchical cortex - basal ganglia loops. Eur J Neurosci. 2020;52(12):4613–38.CrossRef
39.
go back to reference Scholl C, Baladron J, Vitay J, Hamker FH. Enhanced habit formation in Tourette patients explained by shortcut modulation in a hierarchical cortico-basal ganglia model. Brain Struct Funct. 2022. Scholl C, Baladron J, Vitay J, Hamker FH. Enhanced habit formation in Tourette patients explained by shortcut modulation in a hierarchical cortico-basal ganglia model. Brain Struct Funct. 2022.
40.
go back to reference Shin YK, Proctor RW, Capaldi EJ. A review of contemporary ideomotor theory. Psychol Bull. 2010;136:943–74.CrossRef Shin YK, Proctor RW, Capaldi EJ. A review of contemporary ideomotor theory. Psychol Bull. 2010;136:943–74.CrossRef
41.
go back to reference Hommel B, Müsseler J, Aschersleben G, Prinz W. The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci. 2001;24:849–937.CrossRef Hommel B, Müsseler J, Aschersleben G, Prinz W. The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci. 2001;24:849–937.CrossRef
42.
go back to reference Elsner B, Hommel B. Effect anticipation and action control. J Exp Psychol Hum Percept Perform. 2001;27:229–40.CrossRef Elsner B, Hommel B. Effect anticipation and action control. J Exp Psychol Hum Percept Perform. 2001;27:229–40.CrossRef
43.
go back to reference Schroll H, Vitay J, Hamker FH. Dysfunctional and compensatory synaptic plasticity in Parkinson’s disease. Eur J Neurosci. 2014;39:688–702.CrossRef Schroll H, Vitay J, Hamker FH. Dysfunctional and compensatory synaptic plasticity in Parkinson’s disease. Eur J Neurosci. 2014;39:688–702.CrossRef
44.
go back to reference Collins AL, Saunders BT. Heterogeneity in striatal dopamine circuits: form and function in dynamic reward seeking. J Neurosci Res. 2020;98:1046–69.CrossRef Collins AL, Saunders BT. Heterogeneity in striatal dopamine circuits: form and function in dynamic reward seeking. J Neurosci Res. 2020;98:1046–69.CrossRef
45.
go back to reference Collins AGE, Frank MJ. Cognitive control over learning: creating, clustering, and generalizing task-set structure. Psychol Rev. 2013;2013(120):190–229.CrossRef Collins AGE, Frank MJ. Cognitive control over learning: creating, clustering, and generalizing task-set structure. Psychol Rev. 2013;2013(120):190–229.CrossRef
46.
go back to reference Frank MJ. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw. 2006;19:1120–36.CrossRef Frank MJ. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw. 2006;19:1120–36.CrossRef
Metadata
Title
Re-Thinking the Organization of Cortico-Basal Ganglia-Thalamo-Cortical Loops
Authors
Javier Baladron
Fred H. Hamker
Publication date
24-04-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10140-9

Premium Partner