Skip to main content
Top

2025 | OriginalPaper | Chapter

Real-Data-Driven 2000 FPS Color Video from Mosaicked Chromatic Spikes

Authors : Siqi Yang, Zhaojun Huang, Yakun Chang, Bin Fan, Zhaofei Yu, Boxin Shi

Published in: Computer Vision – ECCV 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The spike camera continuously records scene radiance with high-speed, high dynamic range, and low data redundancy properties, as a promising replacement for frame-based high-speed cameras. Previous methods for reconstructing color videos from monochromatic spikes are constrained in capturing full-temporal color information due to their reliance on compensating colors from low-speed RGB frames. Applying a Bayer-pattern color filter array to the spike sensor yields mosaicked chromatic spikes, which complicates noise distribution in high-speed conditions. By validating that the noise of short-term frames follows a zero-mean distribution, we leverage this hypothesis to develop a self-supervised denoising module trained exclusively on real-world data. Although noise is reduced in short-term frames, the long-term accumulation of incident photons is still necessary to construct HDR frames. Therefore, we introduce a progressive warping module to generate pseudo long-term exposure frames. This approach effectively mitigates motion blur artifacts in high-speed conditions. Integrating these modules forms a real-data-driven reconstruction method for mosaicked chromatic spikes. Extensive experiments conducted on both synthetic and real-world data demonstrate that our approach is effective in reconstructing 2000FPS color HDR videos with significantly reduced noise and motion blur compared to existing methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
As the source code for MS23 [21] is not publicly accessible, we conduct re-implementation and modification for the evaluation.
 
Literature
1.
go back to reference Batson, J., Royer, L.: Noise2Self: blind denoising by self-supervision. In: ICML, pp. 524–533 (2019) Batson, J., Royer, L.: Noise2Self: blind denoising by self-supervision. In: ICML, pp. 524–533 (2019)
2.
go back to reference Buades, A., Coll, B., Morel, J.M., Sbert, C.: Self-similarity driven color demosaicking. IEEE TIP 18(6), 1192–1202 (2009)MathSciNet Buades, A., Coll, B., Morel, J.M., Sbert, C.: Self-similarity driven color demosaicking. IEEE TIP 18(6), 1192–1202 (2009)MathSciNet
3.
go back to reference Chang, Y., et al.: 1000 FPS HDR video with a spike-RGB hybrid camera. In: CVPR, pp. 22180–22190 (2023) Chang, Y., et al.: 1000 FPS HDR video with a spike-RGB hybrid camera. In: CVPR, pp. 22180–22190 (2023)
4.
go back to reference Chen, C., et al.: TOPIQ: a top-down approach from semantics to distortions for image quality assessment. IEEE Trans. Image Process. (2024) Chen, C., et al.: TOPIQ: a top-down approach from semantics to distortions for image quality assessment. IEEE Trans. Image Process. (2024)
5.
go back to reference Chen, S., Duan, C., Yu, Z., Xiong, R., Huang, T.: Self-supervised mutual learning for dynamic scene reconstruction of spiking camera. In: IJCAI, pp. 2859–2866 (2022) Chen, S., Duan, C., Yu, Z., Xiong, R., Huang, T.: Self-supervised mutual learning for dynamic scene reconstruction of spiking camera. In: IJCAI, pp. 2859–2866 (2022)
6.
go back to reference Chen, S., Yu, Z., Huang, T.: Self-supervised joint dynamic scene reconstruction and optical flow estimation for spiking camera. In: AAAI, vol. 37, pp. 350–358 (2023) Chen, S., Yu, Z., Huang, T.: Self-supervised joint dynamic scene reconstruction and optical flow estimation for spiking camera. In: AAAI, vol. 37, pp. 350–358 (2023)
7.
go back to reference Condat, L., Mosaddegh, S.: Joint demosaicking and denoising by total variation minimization. In: ICIP, pp. 2781–2784 (2012) Condat, L., Mosaddegh, S.: Joint demosaicking and denoising by total variation minimization. In: ICIP, pp. 2781–2784 (2012)
8.
go back to reference Fossum, E.R., Ma, J., Masoodian, S., Anzagira, L., Zizza, R.: The quanta image sensor: every photon counts. Sensors 16(8), 1260 (2016)CrossRef Fossum, E.R., Ma, J., Masoodian, S., Anzagira, L., Zizza, R.: The quanta image sensor: every photon counts. Sensors 16(8), 1260 (2016)CrossRef
9.
go back to reference Gharbi, M., Chaurasia, G., Paris, S., Durand, F.: Deep joint demosaicking and denoising. ACM TOG 35(6), 1–12 (2016)CrossRef Gharbi, M., Chaurasia, G., Paris, S., Durand, F.: Deep joint demosaicking and denoising. ACM TOG 35(6), 1–12 (2016)CrossRef
10.
go back to reference Gnanasambandam, A., Chan, S.H.: HDR imaging with quanta image sensors: theoretical limits and optimal reconstruction. IEEE TCI 6, 1571–1585 (2020) Gnanasambandam, A., Chan, S.H.: HDR imaging with quanta image sensors: theoretical limits and optimal reconstruction. IEEE TCI 6, 1571–1585 (2020)
11.
go back to reference Han, J., et al.: Neuromorphic camera guided high dynamic range imaging. In: CVPR, pp. 1730–1739 (2020) Han, J., et al.: Neuromorphic camera guided high dynamic range imaging. In: CVPR, pp. 1730–1739 (2020)
12.
go back to reference Hasinoff, S.W., et al.: Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM TOG 35(6), 1–12 (2016)CrossRef Hasinoff, S.W., et al.: Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM TOG 35(6), 1–12 (2016)CrossRef
13.
go back to reference Heide, F., Rouf, M., Hullin, M.B., Labitzke, B., Heidrich, W., Kolb, A.: High-quality computational imaging through simple lenses. ACM TOG 32(5), 1–14 (2013)CrossRef Heide, F., Rouf, M., Hullin, M.B., Labitzke, B., Heidrich, W., Kolb, A.: High-quality computational imaging through simple lenses. ACM TOG 32(5), 1–14 (2013)CrossRef
14.
go back to reference Huang, T., et al.: 1000\(\times \) faster camera and machine vision with ordinary devices. Engineering 25, 110–119 (2022)CrossRef Huang, T., et al.: 1000\(\times \) faster camera and machine vision with ordinary devices. Engineering 25, 110–119 (2022)CrossRef
15.
go back to reference Kiku, D., Monno, Y., Tanaka, M., Okutomi, M.: Beyond color difference: residual interpolation for color image demosaicking. IEEE TIP 25(3), 1288–1300 (2016)MathSciNet Kiku, D., Monno, Y., Tanaka, M., Okutomi, M.: Beyond color difference: residual interpolation for color image demosaicking. IEEE TIP 25(3), 1288–1300 (2016)MathSciNet
17.
go back to reference Lichtsteiner, P., Posch, C., Delbruck, T.: A 128 \(\times \) 128 120 db 15 \(\upmu \)s latency asynchronous temporal contrast vision sensor. IEEE JSSC 43(2), 566–576 (2008) Lichtsteiner, P., Posch, C., Delbruck, T.: A 128 \(\times \) 128 120 db 15 \(\upmu \)s latency asynchronous temporal contrast vision sensor. IEEE JSSC 43(2), 566–576 (2008)
18.
go back to reference Liu, L., Jia, X., Liu, J., Tian, Q.: Joint demosaicing and denoising with self guidance. In: CVPR, pp. 2240–2249 (2020) Liu, L., Jia, X., Liu, J., Tian, Q.: Joint demosaicing and denoising with self guidance. In: CVPR, pp. 2240–2249 (2020)
19.
go back to reference Liu, Y., Gutierrez-Barragan, F., Ingle, A., Gupta, M., Velten, A.: Single-photon camera guided extreme dynamic range imaging. In: WACV, pp. 1575–1585 (2022) Liu, Y., Gutierrez-Barragan, F., Ingle, A., Gupta, M., Velten, A.: Single-photon camera guided extreme dynamic range imaging. In: WACV, pp. 1575–1585 (2022)
20.
go back to reference Ma, S., Gupta, S., Ulku, A.C., Bruschini, C., Charbon, E., Gupta, M.: Quanta burst photography. ACM TOG 39(4), 79–1 (2020) Ma, S., Gupta, S., Ulku, A.C., Bruschini, C., Charbon, E., Gupta, M.: Quanta burst photography. ACM TOG 39(4), 79–1 (2020)
21.
go back to reference Ma, S., Sundar, V., Mos, P., Bruschini, C., Charbon, E., Gupta, M.: Seeing photons in color. ACM TOG 42(4), 1–16 (2023)CrossRef Ma, S., Sundar, V., Mos, P., Bruschini, C., Charbon, E., Gupta, M.: Seeing photons in color. ACM TOG 42(4), 1–16 (2023)CrossRef
22.
go back to reference Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV, pp. 2272–2279 (2009) Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV, pp. 2272–2279 (2009)
23.
go back to reference Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE TIP 17(1), 53–69 (2007)MathSciNet Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE TIP 17(1), 53–69 (2007)MathSciNet
24.
go back to reference Malvar, H.S., He, L.W., Cutler, R.: High-quality linear interpolation for demosaicing of bayer-patterned color images. In: ICASSP, vol. 3, pp. iii–485 (2004) Malvar, H.S., He, L.W., Cutler, R.: High-quality linear interpolation for demosaicing of bayer-patterned color images. In: ICASSP, vol. 3, pp. iii–485 (2004)
25.
go back to reference Mantiuk, R.K., Hammou, D., Hanji, P.: HDR-VDP-3: a multi-metric for predicting image differences, quality and contrast distortions in high dynamic range and regular content. arXiv preprint arXiv:2304.13625 (2023) Mantiuk, R.K., Hammou, D., Hanji, P.: HDR-VDP-3: a multi-metric for predicting image differences, quality and contrast distortions in high dynamic range and regular content. arXiv preprint arXiv:​2304.​13625 (2023)
26.
go back to reference Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: CVPR, pp. 3883–3891 (2017) Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: CVPR, pp. 3883–3891 (2017)
27.
go back to reference Narwaria, M., Da Silva, M.P., Le Callet, P.: HDR-VQM: an objective quality measure for high dynamic range video. Signal Process. Image Commun. 35, 46–60 (2015)CrossRef Narwaria, M., Da Silva, M.P., Le Callet, P.: HDR-VQM: an objective quality measure for high dynamic range video. Signal Process. Image Commun. 35, 46–60 (2015)CrossRef
28.
go back to reference Pekkucuksen, I., Altunbasak, Y.: Gradient based threshold free color filter array interpolation. In: ICIP, pp. 137–140 (2010) Pekkucuksen, I., Altunbasak, Y.: Gradient based threshold free color filter array interpolation. In: ICIP, pp. 137–140 (2010)
29.
go back to reference Tan, D.S., Chen, W.Y., Hua, K.L.: Deepdemosaicking: adaptive image demosaicking via multiple deep fully convolutional networks. IEEE TIP 27(5), 2408–2419 (2018)MathSciNet Tan, D.S., Chen, W.Y., Hua, K.L.: Deepdemosaicking: adaptive image demosaicking via multiple deep fully convolutional networks. IEEE TIP 27(5), 2408–2419 (2018)MathSciNet
30.
go back to reference Tan, R., Zhang, K., Zuo, W., Zhang, L.: Color image demosaicking via deep residual learning. In: ICME, pp. 793–798 (2017) Tan, R., Zhang, K., Zuo, W., Zhang, L.: Color image demosaicking via deep residual learning. In: ICME, pp. 793–798 (2017)
31.
go back to reference Wang, Z., Liu, J., Li, G., Han, H.: Blind2unblind: self-supervised image denoising with visible blind spots. In: CVPR, pp. 2027–2036 (2022) Wang, Z., Liu, J., Li, G., Han, H.: Blind2unblind: self-supervised image denoising with visible blind spots. In: CVPR, pp. 2027–2036 (2022)
32.
go back to reference Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004) Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)
33.
go back to reference Xia, L., Zhao, J., Xiong, R., Huang, T.: SVFI: spiking-based video frame interpolation for high-speed motion. In: AAAI, vol. 37, pp. 2910–2918 (2023) Xia, L., Zhao, J., Xiong, R., Huang, T.: SVFI: spiking-based video frame interpolation for high-speed motion. In: AAAI, vol. 37, pp. 2910–2918 (2023)
34.
go back to reference Xing, W., Egiazarian, K.: End-to-end learning for joint image demosaicing, denoising and super-resolution. In: CVPR, pp. 3507–3516 (2021) Xing, W., Egiazarian, K.: End-to-end learning for joint image demosaicing, denoising and super-resolution. In: CVPR, pp. 3507–3516 (2021)
35.
go back to reference Yang, Y., Han, J., Liang, J., Sato, I., Shi, B.: Learning event guided high dynamic range video reconstruction. In: CVPR, pp. 13924–13934 (2023) Yang, Y., Han, J., Liang, J., Sato, I., Shi, B.: Learning event guided high dynamic range video reconstruction. In: CVPR, pp. 13924–13934 (2023)
36.
go back to reference Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE TIP 21(5), 2481–2499 (2011)MathSciNet Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE TIP 21(5), 2481–2499 (2011)MathSciNet
37.
go back to reference Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018) Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018)
38.
go back to reference Zhang, Z., Zheng, H., Hong, R., Xu, M., Yan, S., Wang, M.: Deep color consistent network for low-light image enhancement. In: CVPR, pp. 1899–1908 (2022) Zhang, Z., Zheng, H., Hong, R., Xu, M., Yan, S., Wang, M.: Deep color consistent network for low-light image enhancement. In: CVPR, pp. 1899–1908 (2022)
39.
go back to reference Zhao, J., Xiong, R., Liu, H., Zhang, J., Huang, T.: Spk2ImgNet: learning to reconstruct dynamic scene from continuous spike stream. In: CVPR, pp. 11996–12005 (2021) Zhao, J., Xiong, R., Liu, H., Zhang, J., Huang, T.: Spk2ImgNet: learning to reconstruct dynamic scene from continuous spike stream. In: CVPR, pp. 11996–12005 (2021)
40.
go back to reference Zhao, J., et al.: Reconstructing clear image for high-speed motion scene with a retina-inspired spike camera. IEEE TCI 8, 12–27 (2021) Zhao, J., et al.: Reconstructing clear image for high-speed motion scene with a retina-inspired spike camera. IEEE TCI 8, 12–27 (2021)
41.
go back to reference Zhao, J., Zhang, S., Ma, L., Yu, Z., Huang, T.: SpikingSIM: a bio-inspired spiking simulator. In: IEEE ISCAS, pp. 3003–3007 (2022) Zhao, J., Zhang, S., Ma, L., Yu, Z., Huang, T.: SpikingSIM: a bio-inspired spiking simulator. In: IEEE ISCAS, pp. 3003–3007 (2022)
43.
go back to reference Zheng, Y., Zheng, L., Yu, Z., Huang, T., Wang, S.: Capture the moment: high-speed imaging with spiking cameras through short-term plasticity. IEEE TPAMI 45(7), 8127–8142 (2023) Zheng, Y., Zheng, L., Yu, Z., Huang, T., Wang, S.: Capture the moment: high-speed imaging with spiking cameras through short-term plasticity. IEEE TPAMI 45(7), 8127–8142 (2023)
44.
go back to reference Zheng, Y., Zheng, L., Yu, Z., Shi, B., Tian, Y., Huang, T.: High-speed image reconstruction through short-term plasticity for spiking cameras. In: CVPR, pp. 6358–6367 (2021) Zheng, Y., Zheng, L., Yu, Z., Shi, B., Tian, Y., Huang, T.: High-speed image reconstruction through short-term plasticity for spiking cameras. In: CVPR, pp. 6358–6367 (2021)
45.
go back to reference Zhu, L., Dong, S., Huang, T., Tian, Y.: A retina-inspired sampling method for visual texture reconstruction. In: ICME, pp. 1432–1437 (2019) Zhu, L., Dong, S., Huang, T., Tian, Y.: A retina-inspired sampling method for visual texture reconstruction. In: ICME, pp. 1432–1437 (2019)
46.
go back to reference Zhu, L., Dong, S., Li, J., Huang, T., Tian, Y.: Retina-like visual image reconstruction via spiking neural model. In: CVPR, pp. 1438–1446 (2020) Zhu, L., Dong, S., Li, J., Huang, T., Tian, Y.: Retina-like visual image reconstruction via spiking neural model. In: CVPR, pp. 1438–1446 (2020)
Metadata
Title
Real-Data-Driven 2000 FPS Color Video from Mosaicked Chromatic Spikes
Authors
Siqi Yang
Zhaojun Huang
Yakun Chang
Bin Fan
Zhaofei Yu
Boxin Shi
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-73254-6_18

Premium Partner