Skip to main content
Top

2023 | OriginalPaper | Chapter

4. Real-Time Hybrid Substructuring for Shock Applications Considering Effective Actuator Control

Authors : Christina Insam, Michael J. Harris, Matthew R. Stevens, Richard E. Christenson

Published in: Dynamic Substructures, Volume 4

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Shock describes a rapid change in loading conditions and occurs in many mechanical, aerospace, and civil engineering systems. The shock response of these systems is of critical importance in their design and must therefore be studied. While experimental investigation of shock response offers accurate results, this approach is costly and requires highly specialized and unique facilities. In contrast, numerical investigation of shock events can be an effective alternative; however, modeling the systems accurately can be challenging. In this paper, the application of Real-Time Hybrid Substructuring (RTHS) to study the system response to a shock event is proposed. RTHS is a cyber-physical testing method, combining both experimental and numerical testing. The RTHS approach is intended to fully incorporate the dynamic interaction between the structure and the excitation source and realistically capture all dynamic phenomena. In this preliminary study of an RTHS shock test, the impact of a swinging pendulum on a mass–spring–damper system is investigated. This highly dynamic event requires precise actuator control and dynamics compensation. This work makes use of a model-based feedforward compensator, namely a minimum phase inverse compensator. To reduce any remaining frequency-dependent time delay or magnitude tracking errors, this compensator is combined with a P-type Iterative Learning Controller. The interaction force profile is studied for varying eigenfrequencies and mass ratios of the impacted mass–spring–damper system. The tests are able to replicate the free vibration response of the system accurately. Despite a good learning performance of the Iterative Learning Control, there are still tracking errors in the initial impact phase. Future work will look to improve actuator control and performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
For example, a proportional–integral controller is a feedback controller in time domain.
 
2
An anti-causal system is a system, where the output depends on future inputs.
 
3
The free vibration response is technically not an RTHS test, because the interface force is zero.
 
Literature
1.
go back to reference American Association of State Highway and Transportation Officials: AASHTO LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials, Washington DC (2012) American Association of State Highway and Transportation Officials: AASHTO LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials, Washington DC (2012)
2.
go back to reference Bartl, A.: Real-time hybrid substructure testing. PhD. Thesis, Technical University of Munich (2019) Bartl, A.: Real-time hybrid substructure testing. PhD. Thesis, Technical University of Munich (2019)
3.
go back to reference Botelho, R.M.: Real-time hybrid substructuring for marine applications of vibration control and structural acoustics. Phd Thesis, University of Connecticut (2015) Botelho, R.M.: Real-time hybrid substructuring for marine applications of vibration control and structural acoustics. Phd Thesis, University of Connecticut (2015)
4.
go back to reference Bristow, D.A., Tharayil, M., Alleyne, A.G.: A survey of iterative learning control: a learning-based method for high-performance tracking control. IEEE Control Syst. Mag. 3, 96–114 (2006) Bristow, D.A., Tharayil, M., Alleyne, A.G.: A survey of iterative learning control: a learning-based method for high-performance tracking control. IEEE Control Syst. Mag. 3, 96–114 (2006)
5.
go back to reference Carrion, J., Spencer, B.F.: Real-time hybrid testing using model-based delay compensation. In: 4th International Conference on Earthquake Engineering., Taipei, Tiawan, Paper No. 299, p. 10 (2006) Carrion, J., Spencer, B.F.: Real-time hybrid testing using model-based delay compensation. In: 4th International Conference on Earthquake Engineering., Taipei, Tiawan, Paper No. 299, p. 10 (2006)
6.
go back to reference Carrion, J.E., Spencer Jr., B.F.: Model-based strategies for real-time hybrid testing. In: Newmark Structural Engineering Laboratory. Report Series No. 6. University of Illinois at Urbana-Champaign, Urbana, IL (2007) Carrion, J.E., Spencer Jr., B.F.: Model-based strategies for real-time hybrid testing. In: Newmark Structural Engineering Laboratory. Report Series No. 6. University of Illinois at Urbana-Champaign, Urbana, IL (2007)
7.
go back to reference Darby, A.P., Blakeborough, A., Williams, M.S.: Real-time substructure tests using hydraulic actuator. J. Eng. Mech. 125(10), 1133–1139 (1999)CrossRef Darby, A.P., Blakeborough, A., Williams, M.S.: Real-time substructure tests using hydraulic actuator. J. Eng. Mech. 125(10), 1133–1139 (1999)CrossRef
8.
go back to reference Department of the Navy (NAVY): MIL-S-901D: requirements for shock tests. H.I. (high-impact) shipboard machinery, equipment, and systems (1989) Department of the Navy (NAVY): MIL-S-901D: requirements for shock tests. H.I. (high-impact) shipboard machinery, equipment, and systems (1989)
9.
go back to reference Federal Emergency Management Agency (FEMA): Risk management series: reference manual to mitigate potential terrorist attacks against buildings (FEMA 426) (2003) Federal Emergency Management Agency (FEMA): Risk management series: reference manual to mitigate potential terrorist attacks against buildings (FEMA 426) (2003)
10.
go back to reference Fermandois, G.A., Spencer, B.F.: Model-based framework for multi-axial real-time hybrid simulation testing. Earthq. Eng. Eng. Vib. 16, 671–691 (2017)CrossRef Fermandois, G.A., Spencer, B.F.: Model-based framework for multi-axial real-time hybrid simulation testing. Earthq. Eng. Eng. Vib. 16, 671–691 (2017)CrossRef
11.
go back to reference Harris, C.M., Piersol, A.G.: Harris’ Shock and Vibration Handbook, 5th edn. McGraw-Hill, New York (2002) Harris, C.M., Piersol, A.G.: Harris’ Shock and Vibration Handbook, 5th edn. McGraw-Hill, New York (2002)
12.
go back to reference Hochrainer, M.J., Puhwein, A.M.: Investigation of nonlinear dynamic phenomena applying real-time hybrid simulation. In Nonlinear Structures and Systems, vol. 1, pp. 125–131. Springer, Berlin (2020) Hochrainer, M.J., Puhwein, A.M.: Investigation of nonlinear dynamic phenomena applying real-time hybrid simulation. In Nonlinear Structures and Systems, vol. 1, pp. 125–131. Springer, Berlin (2020)
13.
go back to reference Horiuchi, T., Nakagawa, M., Sugano, M., Konno, T.: Development of a real-time hybrid experimental system with actuator delay compensation. In 11th World Conference on Earthquake Engineering, Paper No. 660 (1996) Horiuchi, T., Nakagawa, M., Sugano, M., Konno, T.: Development of a real-time hybrid experimental system with actuator delay compensation. In 11th World Conference on Earthquake Engineering, Paper No. 660 (1996)
14.
go back to reference Horiuchi, T., Inoue, M., Konno, T., Namita, Y.: Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber. Earthq. Eng. Struct. Dyn. 28(10), 1121–1141 (1999)CrossRef Horiuchi, T., Inoue, M., Konno, T., Namita, Y.: Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber. Earthq. Eng. Struct. Dyn. 28(10), 1121–1141 (1999)CrossRef
15.
go back to reference Insam, C., Kist, A., Rixen, D.J.: High fidelity real-time hybrid substructure testing using iterative learning control. In ISR - 52nd International Symposium on Robotics. VDE Verlag, Berlin, Offenbach (2020) Insam, C., Kist, A., Rixen, D.J.: High fidelity real-time hybrid substructure testing using iterative learning control. In ISR - 52nd International Symposium on Robotics. VDE Verlag, Berlin, Offenbach (2020)
16.
go back to reference Insam, C., Kist, A., Schwalm, H., Rixen, D.J.: Robust and high fidelity real-time hybrid substructuring. Mech. Syst. Signal Process. 157, 107720 (2021)CrossRef Insam, C., Kist, A., Schwalm, H., Rixen, D.J.: Robust and high fidelity real-time hybrid substructuring. Mech. Syst. Signal Process. 157, 107720 (2021)CrossRef
17.
go back to reference Lang, G.F.: Electrodynamic shaker fundamentals. Sound Vibration 31, 14–23 (1997) Lang, G.F.: Electrodynamic shaker fundamentals. Sound Vibration 31, 14–23 (1997)
18.
go back to reference Lin, F., Maghareh, A., Dyke, S.J., Lu, X.: Experimental implementation of predictive indicators for configuring a real-time hybrid simulation. Eng. Struct. 101, 427–438 (2015)CrossRef Lin, F., Maghareh, A., Dyke, S.J., Lu, X.: Experimental implementation of predictive indicators for configuring a real-time hybrid simulation. Eng. Struct. 101, 427–438 (2015)CrossRef
19.
go back to reference Ljung, L.: System Identification: Theory for the User. Prentice Hall Information and System Sciences Series. Prentice Hall, Hoboken (1999) Ljung, L.: System Identification: Theory for the User. Prentice Hall Information and System Sciences Series. Prentice Hall, Hoboken (1999)
20.
go back to reference Maghareh, A., Dyke, S.J., Silva, C.E.: A self-tuning robust control system for nonlinear real-time hybrid simulation. Earthq. Eng. Struct. Dyn. 49(7), 695–715 (2020)CrossRef Maghareh, A., Dyke, S.J., Silva, C.E.: A self-tuning robust control system for nonlinear real-time hybrid simulation. Earthq. Eng. Struct. Dyn. 49(7), 695–715 (2020)CrossRef
21.
go back to reference Nakashima, M., Masaoka, N.: Real-time on-line test for MDOF systems. Earthq. Eng. Struct. Dyn. 28, 393–420 (1999)CrossRef Nakashima, M., Masaoka, N.: Real-time on-line test for MDOF systems. Earthq. Eng. Struct. Dyn. 28, 393–420 (1999)CrossRef
22.
go back to reference Nakashima, M., Kato, H., Takaoka, E.: Development of real-time pseudo dynamic testing. Earthq. Eng. Struct. Dyn. 21(1), 79–92 (1992)CrossRef Nakashima, M., Kato, H., Takaoka, E.: Development of real-time pseudo dynamic testing. Earthq. Eng. Struct. Dyn. 21(1), 79–92 (1992)CrossRef
23.
go back to reference Norrlöf, M.: Iterative learning control - analysis, design, and experiments. Ph.D. Thesis, Linköping University (2000) Norrlöf, M.: Iterative learning control - analysis, design, and experiments. Ph.D. Thesis, Linköping University (2000)
24.
go back to reference Owens, D.H.: Iterative Learning Control, pp. 1–8. Springer, London (2014) Owens, D.H.: Iterative Learning Control, pp. 1–8. Springer, London (2014)
25.
go back to reference Owens, D., Daley, S.: Iterative learning control - monotonicity and optimization. Appl. Math. Comput. Sci. 18, 279–293 (2008)MathSciNetMATH Owens, D., Daley, S.: Iterative learning control - monotonicity and optimization. Appl. Math. Comput. Sci. 18, 279–293 (2008)MathSciNetMATH
26.
go back to reference Phillips, B.M., Spencer, B.F.: Model-based feedforward-feedback actuator control for real-time hybrid simulation. J. Struct. Eng. 139(7), 1205–1214 (2013)CrossRef Phillips, B.M., Spencer, B.F.: Model-based feedforward-feedback actuator control for real-time hybrid simulation. J. Struct. Eng. 139(7), 1205–1214 (2013)CrossRef
27.
go back to reference Phillips, B.M., Spencer, B.F.: Model-based multiactuator control for real-time hybrid simulation. J. Eng. Mech. 139(2), 219–228 (2013)CrossRef Phillips, B.M., Spencer, B.F.: Model-based multiactuator control for real-time hybrid simulation. J. Eng. Mech. 139(2), 219–228 (2013)CrossRef
28.
go back to reference Ryschkewitsch, M.G.: Pyroshock test criteria. NASA-STD-7003A (2011) Ryschkewitsch, M.G.: Pyroshock test criteria. NASA-STD-7003A (2011)
29.
go back to reference Saouma, V., Sivaselvan, M.: Hybrid Simulation: Theory, Implementation and Applications. Taylor & Francis, Milton Park (2008) Saouma, V., Sivaselvan, M.: Hybrid Simulation: Theory, Implementation and Applications. Taylor & Francis, Milton Park (2008)
Metadata
Title
Real-Time Hybrid Substructuring for Shock Applications Considering Effective Actuator Control
Authors
Christina Insam
Michael J. Harris
Matthew R. Stevens
Richard E. Christenson
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-04094-8_4