Skip to main content
Top
Published in:

18-03-2019 | Original Paper

Real-time Kinect-based air-writing system with a novel analytical classifier

Authors: Shahram Mohammadi, Reza Maleki

Published in: International Journal on Document Analysis and Recognition (IJDAR) | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Air-writing is an attractive method of interaction between human and machine due to lack of any interface device on the user side. After removing existing limitations and solving the current challenges, it can be used in many applications in the future. In this paper, using the Kinect depth and color images, an air-writing system is proposed to identify single characters such as digits or letters and connected characters such as numbers or words. In this system, automatic clustering, slope variations detection, and a novel analytical classification are proposed as new approaches to eliminate noise in the trajectory from the depth image and hand segmentation, to extract the feature vector, and to identify the character from the feature vector, respectively. Experimental results show that the proposed system can successfully identify single characters and connected characters with the average recognition rate of 97%. It provides a better result than other similar approaches proposed in the literature. In the proposed system, the character recognition time is quite low, about 3 ms, because of using a novel analytical classifier. Evaluation of 4 classifiers shows that the proposed classifier has a higher speed and precision than the SVM, HMM, and K-nearest neighbors classifiers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Palmondon, R., Srihari, S.N.: On-line and off-line handwriting recognition: a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 63–84 (2000)CrossRef Palmondon, R., Srihari, S.N.: On-line and off-line handwriting recognition: a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 63–84 (2000)CrossRef
2.
go back to reference Saini, R., Kumar, P., Roy, P.P., Dogra, D.P.: A novel framework of continuous human-activity recognition using kinect. Neurocomputing 311, 99–111 (2018)CrossRef Saini, R., Kumar, P., Roy, P.P., Dogra, D.P.: A novel framework of continuous human-activity recognition using kinect. Neurocomputing 311, 99–111 (2018)CrossRef
3.
go back to reference Kumar, P., Saini, R., Behera, S.K., Dogra, D.P.: Real-time recognition of sign language gesture and air-writing using leap motion. In: 2017 Fifteenth IAPR International Conference on Machine Vision Applications, Nagoya, Japan (2017) Kumar, P., Saini, R., Behera, S.K., Dogra, D.P.: Real-time recognition of sign language gesture and air-writing using leap motion. In: 2017 Fifteenth IAPR International Conference on Machine Vision Applications, Nagoya, Japan (2017)
4.
go back to reference Khan, N.A., Khan, S.M., Abdullah, M., Kanji, S.J., Iltifat, U.: Use hand gesture to write in air recognize with computer vision. IJCSNS Int. J. Comput. Sci. Netw. Secur. 17(5), 51–55 (2017) Khan, N.A., Khan, S.M., Abdullah, M., Kanji, S.J., Iltifat, U.: Use hand gesture to write in air recognize with computer vision. IJCSNS Int. J. Comput. Sci. Netw. Secur. 17(5), 51–55 (2017)
5.
go back to reference Agrawal, S., Constandache, L., Gaonkar, S., Roy, R., Caves, K., Deruyter, F.: Using mobile phones to write in air. In: MobiSys’11 Proceeding of the 9th International Conference on Mobile Systems, ACM (2013) Agrawal, S., Constandache, L., Gaonkar, S., Roy, R., Caves, K., Deruyter, F.: Using mobile phones to write in air. In: MobiSys’11 Proceeding of the 9th International Conference on Mobile Systems, ACM (2013)
6.
go back to reference Xu, S., Xue, Y.: Air-writing characters modelling and recognition on modified CHMM. 2016 IEEE International Conference on Systems, Man and Cybernetics (SMC) (2016) Xu, S., Xue, Y.: Air-writing characters modelling and recognition on modified CHMM. 2016 IEEE International Conference on Systems, Man and Cybernetics (SMC) (2016)
7.
go back to reference Beg, S., Khan, M.F., Baig, F.: Text writing in air. J. Inf. Display 14(4), 137–148 (2013)CrossRef Beg, S., Khan, M.F., Baig, F.: Text writing in air. J. Inf. Display 14(4), 137–148 (2013)CrossRef
8.
go back to reference Amma, C., Georgi, M., Schultz, T.: Air writing: a wearable handwriting recognition system. Pers. Ubiquitous Comput. 18(1), 191–203 (2014)CrossRef Amma, C., Georgi, M., Schultz, T.: Air writing: a wearable handwriting recognition system. Pers. Ubiquitous Comput. 18(1), 191–203 (2014)CrossRef
9.
go back to reference Kumar, P., Verma, J., Prasad, S.: A wearable real-time device for human–computer interaction. Int. J. Adv. Sci. Technol. 43, 15–26 (2012) Kumar, P., Verma, J., Prasad, S.: A wearable real-time device for human–computer interaction. Int. J. Adv. Sci. Technol. 43, 15–26 (2012)
10.
go back to reference Patil, S., Kim, D., Park, S., Chai, Y.: Handwriting recognition in free space using WIMU-based hand motion analysis. Hindawi J. Sens. 2016, 1–10 (2016)CrossRef Patil, S., Kim, D., Park, S., Chai, Y.: Handwriting recognition in free space using WIMU-based hand motion analysis. Hindawi J. Sens. 2016, 1–10 (2016)CrossRef
11.
go back to reference Islam, R., Mahmud, H., Hasan, M.K., Rubaiyeat, H.A.: Alphabet recognition in air writing using depth information. ACHI. ISBN: 978-1-61208-468-8 (2016) Islam, R., Mahmud, H., Hasan, M.K., Rubaiyeat, H.A.: Alphabet recognition in air writing using depth information. ACHI. ISBN: 978-1-61208-468-8 (2016)
12.
go back to reference Chen, M., Alregib, G., Juang, B.H.: Air-writing recognition, Part 1: modeling and recognition of characters, words and connecting motions. IEEE Trans. Hum. Mach. Syst. 46(3), 403–413 (2016)CrossRef Chen, M., Alregib, G., Juang, B.H.: Air-writing recognition, Part 1: modeling and recognition of characters, words and connecting motions. IEEE Trans. Hum. Mach. Syst. 46(3), 403–413 (2016)CrossRef
13.
go back to reference Jin, X.J., Feng, Q., Hou, X., Liu, C.L.: Visual gesture character string recognition by classification-based segmentation with stroke deletion. In: Second IAPR Asian Conference on Pattern Recognition, ACPR (2011) Jin, X.J., Feng, Q., Hou, X., Liu, C.L.: Visual gesture character string recognition by classification-based segmentation with stroke deletion. In: Second IAPR Asian Conference on Pattern Recognition, ACPR (2011)
14.
go back to reference Aggarwal, R., Swetha, S.: Online handwriting recognition using depth sensors. In: ICDAR, 13th International Conference (2015) Aggarwal, R., Swetha, S.: Online handwriting recognition using depth sensors. In: ICDAR, 13th International Conference (2015)
15.
go back to reference Murata, T., Shin, J.: Hand gesture and character recognition based on kinect sensor. Int. J. Distrib. Sens. Netw. 10, 278460 (2014)CrossRef Murata, T., Shin, J.: Hand gesture and character recognition based on kinect sensor. Int. J. Distrib. Sens. Netw. 10, 278460 (2014)CrossRef
16.
go back to reference Deepa, D., Dharmalingam, R.: Feature and processing of recognition of characters, words & connecting motions. IJARIIT 3(2), 699–704 (2017) Deepa, D., Dharmalingam, R.: Feature and processing of recognition of characters, words & connecting motions. IJARIIT 3(2), 699–704 (2017)
17.
go back to reference Rautaray, S.S., Agarwal, A.: Real time hand gesture recognition system for dynamic applications. Int. J. UbiComp. 3, 21 (2012)CrossRef Rautaray, S.S., Agarwal, A.: Real time hand gesture recognition system for dynamic applications. Int. J. UbiComp. 3, 21 (2012)CrossRef
18.
go back to reference Froba, B., Ernst, A.: Face detection with the modified census transform. In: Sixth IEEE International Conference on Automatic Face and Gesture Recognition (2004) Froba, B., Ernst, A.: Face detection with the modified census transform. In: Sixth IEEE International Conference on Automatic Face and Gesture Recognition (2004)
19.
go back to reference Conseil, S., Bourennane, S.: Comparison of Fourier descriptors and Hu moments for hand posture recognition. In: 15th European Signal Processing Conference (2007) Conseil, S., Bourennane, S.: Comparison of Fourier descriptors and Hu moments for hand posture recognition. In: 15th European Signal Processing Conference (2007)
20.
go back to reference Zhang, D., Lu, G.: A comparative study of Fourier descriptors for shape representation and retrieval. In: 5th Asian Conference on Computer Vision (ACCV), Melbourne, Australia (2002) Zhang, D., Lu, G.: A comparative study of Fourier descriptors for shape representation and retrieval. In: 5th Asian Conference on Computer Vision (ACCV), Melbourne, Australia (2002)
21.
go back to reference Lockton, R.: Hand Gesture Recognition Using Computer Vision. Oxford University Press, Oxford (2002) Lockton, R.: Hand Gesture Recognition Using Computer Vision. Oxford University Press, Oxford (2002)
22.
go back to reference YanuTara, R., Santosa, P., Adji, T.: Sign language recognition in robot teleoperation using centroid distance Fourier descriptors. Int. J. Comput. Appl. 48(2), 8–12 (2012) YanuTara, R., Santosa, P., Adji, T.: Sign language recognition in robot teleoperation using centroid distance Fourier descriptors. Int. J. Comput. Appl. 48(2), 8–12 (2012)
23.
go back to reference Ren, Y., Zhang, F.: Hand gesture recognition based on MEB-SVM. In: International Conference on Embedded Software and Systems, ICESS’09 (2009) Ren, Y., Zhang, F.: Hand gesture recognition based on MEB-SVM. In: International Conference on Embedded Software and Systems, ICESS’09 (2009)
24.
go back to reference Ratanamahatana, C.H.A., Keogh, E.: Making Time-Series Classification More Accurate Using Learned Constraints. California University Press, Oakland (2004)CrossRef Ratanamahatana, C.H.A., Keogh, E.: Making Time-Series Classification More Accurate Using Learned Constraints. California University Press, Oakland (2004)CrossRef
25.
go back to reference Rabiner, L.R.: A tutorial on hidden Markov models and selected application in speech recognition. Proc. IEEE 77(2), 257–286 (1989)CrossRef Rabiner, L.R.: A tutorial on hidden Markov models and selected application in speech recognition. Proc. IEEE 77(2), 257–286 (1989)CrossRef
26.
go back to reference Kundu, A., He, Y., Bahl, P.: Recognition of hand writing words: first and second order hidden Markov model based approach. Pattern Recogn. 22(3), 283 (1989)CrossRef Kundu, A., He, Y., Bahl, P.: Recognition of hand writing words: first and second order hidden Markov model based approach. Pattern Recogn. 22(3), 283 (1989)CrossRef
27.
go back to reference Nyirarugira, C., Kim, T.: Stratified gesture recognition using the normalized longest common subsequence with rough sets. Signal Process. Image Commun. 30, 178–189 (2015)CrossRef Nyirarugira, C., Kim, T.: Stratified gesture recognition using the normalized longest common subsequence with rough sets. Signal Process. Image Commun. 30, 178–189 (2015)CrossRef
28.
go back to reference Hun, J., Shao, L., Xu, D., Shotten, J.: Enhanced computer vision with Microsoft kinect sensor: a review. IEEE Trans. Cybern. 43, 1318–1334 (2013)CrossRef Hun, J., Shao, L., Xu, D., Shotten, J.: Enhanced computer vision with Microsoft kinect sensor: a review. IEEE Trans. Cybern. 43, 1318–1334 (2013)CrossRef
29.
go back to reference Mackay, D.: Information Theory, Inference and Learning Algorithms. MR 2012999. Cambridge University Press, pp 284–292. ISBN: 0-521-64298-1 (2003) Mackay, D.: Information Theory, Inference and Learning Algorithms. MR 2012999. Cambridge University Press, pp 284–292. ISBN: 0-521-64298-1 (2003)
30.
go back to reference Liu, F., Du, B., Wang, Q., Wang, Y., Zeng, W.: Hand gesture recognition using via deterministic learning. In: 29th Chinese Control and Decision Conference (CCDC) (2017) Liu, F., Du, B., Wang, Q., Wang, Y., Zeng, W.: Hand gesture recognition using via deterministic learning. In: 29th Chinese Control and Decision Conference (CCDC) (2017)
31.
go back to reference Feng, Z., Xu, S., Zhang, X., Jin, L., Ye, Z.: Real-time fingertip tracking and detection using kinect depth sensor for a new writing-in-the air system. In: The 4th International Conference on Internet Multimedia Computing and Service (ICIMCS), China (2012) Feng, Z., Xu, S., Zhang, X., Jin, L., Ye, Z.: Real-time fingertip tracking and detection using kinect depth sensor for a new writing-in-the air system. In: The 4th International Conference on Internet Multimedia Computing and Service (ICIMCS), China (2012)
32.
go back to reference Kane, L., Khanna, P.: Vision-based mid-air unistroke character input using polar signatures. IEEE Trans. Hum. Mach. Syst. J. 47(6), 1077–1088 (2017)CrossRef Kane, L., Khanna, P.: Vision-based mid-air unistroke character input using polar signatures. IEEE Trans. Hum. Mach. Syst. J. 47(6), 1077–1088 (2017)CrossRef
33.
go back to reference Ortiz, L., Cabrera, V., Goncalves, L.: Depth data error modeling of the ZED 3D vision sensor from stereolabs. ELCVIA Electron Lett. Comput. Vis. Image Anal. 17(1), 1–15 (2018)CrossRef Ortiz, L., Cabrera, V., Goncalves, L.: Depth data error modeling of the ZED 3D vision sensor from stereolabs. ELCVIA Electron Lett. Comput. Vis. Image Anal. 17(1), 1–15 (2018)CrossRef
Metadata
Title
Real-time Kinect-based air-writing system with a novel analytical classifier
Authors
Shahram Mohammadi
Reza Maleki
Publication date
18-03-2019
Publisher
Springer Berlin Heidelberg
Published in
International Journal on Document Analysis and Recognition (IJDAR) / Issue 2/2019
Print ISSN: 1433-2833
Electronic ISSN: 1433-2825
DOI
https://doi.org/10.1007/s10032-019-00321-4

Other articles of this Issue 2/2019

International Journal on Document Analysis and Recognition (IJDAR) 2/2019 Go to the issue

Premium Partner