Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 3/2021

03-01-2021 | Research Article-Mechanical Engineering

Real-Time Stabilization Control of a Rotary Inverted Pendulum Using LQR-Based Sliding Mode Controller

Authors: Ishan Chawla, Ashish Singla

Published in: Arabian Journal for Science and Engineering | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Inverted pendulum has been a benchmark system in dynamics and control theory. This system has an inherit feature of being nonlinear, unstable and underactuated. Due to which, it is widely known as a test bench to evaluate the capability and performance of emerging control algorithms. Furthermore, the inverted pendulum system is also known to resemble many real-world problems including Segway’s, humanoid robots, to name a few. The literature on inverted pendulum system reveals a wide range of controllers. The linear quadratic regulator (LQR) is one of the well-known optimal controllers; however, it lags in robustness. The sliding mode controller is known for its robustness characteristics; however, it has a problem of non-robust reachability phase. To solve the problems in both the controllers while retrieving their advantages, this paper presents the design of a hybrid controller which is a combination of LQR and sliding mode controller for the robust control of rotary inverted pendulum. This controller uses LQR as a baseline controller for optimal performance and a sliding mode controller to robustly control the system against matched uncertainties. The robustness of the proposed controller is validated on a real-time rotary inverted pendulum subjected to an input disturbance. The obtained simulation as well as experimental results show that the proposed controller performed satisfactorily with robustness to matched uncertainties. Furthermore, the problem of chattering in the controller is dealt by smoothening the control input with insignificant loss in robustness.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The proposed LQR based sliding mode controller is a special case of integral sliding mode controller [27] where an LQR controller acts as a nominal controller to achieve optimal control.
 
Literature
1.
go back to reference Davison, E.J.: Benchmark problems for control system design. Maturitas (1990) Davison, E.J.: Benchmark problems for control system design. Maturitas (1990)
2.
go back to reference Wang, J.J.: Simulation studies of inverted pendulum based on PID controllers. Simul. Model. Pract. Theory 19(1), 440–449 (2011)CrossRef Wang, J.J.: Simulation studies of inverted pendulum based on PID controllers. Simul. Model. Pract. Theory 19(1), 440–449 (2011)CrossRef
3.
go back to reference Elhasairi, A.; Pechev, A.: Humanoid robot balance control using the spherical inverted pendulum mode. Front. Robot. AI 2(1), 1–13 (2015) Elhasairi, A.; Pechev, A.: Humanoid robot balance control using the spherical inverted pendulum mode. Front. Robot. AI 2(1), 1–13 (2015)
4.
go back to reference Younis W.; Abdelati, M.: Design and implementation of an experimental segway model. In: AIP Conference Proceedings, pp. 350–354 (2009) Younis W.; Abdelati, M.: Design and implementation of an experimental segway model. In: AIP Conference Proceedings, pp. 350–354 (2009)
5.
go back to reference Housner, G.W.: The behavior of inverted pendulum structures during earthquakes. Bull. Seismol. Soc. Am. 53(2), 403–417 (1963) Housner, G.W.: The behavior of inverted pendulum structures during earthquakes. Bull. Seismol. Soc. Am. 53(2), 403–417 (1963)
6.
go back to reference Martin, P.; Devasia, S.; Paden, B.: A different look at output tracking: control of a VTOL aircraft. Automatica 32(1), 101–107 (1996)CrossRef Martin, P.; Devasia, S.; Paden, B.: A different look at output tracking: control of a VTOL aircraft. Automatica 32(1), 101–107 (1996)CrossRef
7.
go back to reference Chawla, I.; Singla, A.: Real-time control of a rotary inverted pendulum using robust LQR-based ANFIS controller. Int. J. Nonlinear Sci. Numer. Simul. 19(3–4), 379–389 (2018)MathSciNetCrossRef Chawla, I.; Singla, A.: Real-time control of a rotary inverted pendulum using robust LQR-based ANFIS controller. Int. J. Nonlinear Sci. Numer. Simul. 19(3–4), 379–389 (2018)MathSciNetCrossRef
8.
go back to reference Chawla, I.; Singla, A.: System identification of an inverted pendulum using adaptive neural fuzzy inference system. In: Yadav, N., Yadav, A., Bansal, J., Deep, K., Kim, J. (eds.) Harmony Search and Nature Inspired Optimization Algorithms. Advances in Intelligent Systems and Computing, vol. 741, pp. 809–817. Springer, Singapore (2019)CrossRef Chawla, I.; Singla, A.: System identification of an inverted pendulum using adaptive neural fuzzy inference system. In: Yadav, N., Yadav, A., Bansal, J., Deep, K., Kim, J. (eds.) Harmony Search and Nature Inspired Optimization Algorithms. Advances in Intelligent Systems and Computing, vol. 741, pp. 809–817. Springer, Singapore (2019)CrossRef
9.
go back to reference Muškinja, N.; Tovornik, B.: Swinging up and stabilization of a real inverted pendulum. IEEE Trans. Ind. Electron. 53(2), 631–639 (2006)CrossRef Muškinja, N.; Tovornik, B.: Swinging up and stabilization of a real inverted pendulum. IEEE Trans. Ind. Electron. 53(2), 631–639 (2006)CrossRef
10.
go back to reference Chawla, I.; Chopra, V.; Singla, A.: Robust LQR based ANFIS control of x-z inverted pendulum. In: Amity International Conference on Artificial Intelligence, pp. 818–823 (2019) Chawla, I.; Chopra, V.; Singla, A.: Robust LQR based ANFIS control of x-z inverted pendulum. In: Amity International Conference on Artificial Intelligence, pp. 818–823 (2019)
11.
go back to reference Patra, A.K.: Adaptive Kalman filtering model predictive controller design for stabilizing and trajectory tracking of inverted pendulum. J. Inst. Eng. Ser. B. 101(6), 677–688 (2020)CrossRef Patra, A.K.: Adaptive Kalman filtering model predictive controller design for stabilizing and trajectory tracking of inverted pendulum. J. Inst. Eng. Ser. B. 101(6), 677–688 (2020)CrossRef
12.
go back to reference Singla, A.; Singh, G.: Real-time swing-up and stabilization control of a cart-pendulum system with constrained cart movement. Int. J. Nonlinear Sci. Numer. Simul. 18(6), 525–539 (2017)MathSciNetCrossRef Singla, A.; Singh, G.: Real-time swing-up and stabilization control of a cart-pendulum system with constrained cart movement. Int. J. Nonlinear Sci. Numer. Simul. 18(6), 525–539 (2017)MathSciNetCrossRef
13.
go back to reference Kathpal, A.; Singla, A.: SimMechanics™ based modeling, simulation and real-time control of rotary inverted pendulum. In: International Conference on Intelligent Systems and Control, pp. 166–172 (2017) Kathpal, A.; Singla, A.: SimMechanics™ based modeling, simulation and real-time control of rotary inverted pendulum. In: International Conference on Intelligent Systems and Control, pp. 166–172 (2017)
14.
go back to reference Waszak, M.; Łangowski, R.: An automatic self-tuning control system design for an inverted pendulum. IEEE Access 8, 26726–26738 (2020)CrossRef Waszak, M.; Łangowski, R.: An automatic self-tuning control system design for an inverted pendulum. IEEE Access 8, 26726–26738 (2020)CrossRef
15.
go back to reference Park, M.S.; Chwa, D.: Swing-up and stabilization control of inverted-pendulum systems via coupled sliding-mode control method. IEEE Trans. Ind. Electron. 56(9), 3541–3555 (2009)CrossRef Park, M.S.; Chwa, D.: Swing-up and stabilization control of inverted-pendulum systems via coupled sliding-mode control method. IEEE Trans. Ind. Electron. 56(9), 3541–3555 (2009)CrossRef
16.
go back to reference Huang, J.; Zhang, M.; Ri, S.; Xiong, C.; Li, Z.; Kang, Y.: High-order disturbance-observer-based sliding mode control for mobile wheeled inverted pendulum systems. IEEE Trans. Ind. Electron. 67(3), 2030–2041 (2020)CrossRef Huang, J.; Zhang, M.; Ri, S.; Xiong, C.; Li, Z.; Kang, Y.: High-order disturbance-observer-based sliding mode control for mobile wheeled inverted pendulum systems. IEEE Trans. Ind. Electron. 67(3), 2030–2041 (2020)CrossRef
17.
go back to reference Bayram, A.; Kara, F.: Design and control of spatial inverted pendulum with two degrees of freedom. J. Braz. Soc. Mech. Sci. Eng. 3(10), 1–14 (2020) Bayram, A.; Kara, F.: Design and control of spatial inverted pendulum with two degrees of freedom. J. Braz. Soc. Mech. Sci. Eng. 3(10), 1–14 (2020)
18.
go back to reference Eide, R.; Egelid, P.M.; Stamsø, A.; Karimi, H.R.: LQG control design for balancing an inverted pendulum mobile robot. Intell. Control Autom. 2(2), 160–166 (2011)CrossRef Eide, R.; Egelid, P.M.; Stamsø, A.; Karimi, H.R.: LQG control design for balancing an inverted pendulum mobile robot. Intell. Control Autom. 2(2), 160–166 (2011)CrossRef
19.
go back to reference Huifeng, C.; Hongxing, L.; Peipei, Y.: Swinging-up and stabilization of the inverted pendulum by energy well and SDRE control. In: Chinese Control and Decision Conference, pp. 2222–2226 (2009) Huifeng, C.; Hongxing, L.; Peipei, Y.: Swinging-up and stabilization of the inverted pendulum by energy well and SDRE control. In: Chinese Control and Decision Conference, pp. 2222–2226 (2009)
20.
go back to reference Johnson, T.; Zhou, S.; Cheah, W.; Mansell, W.; Young, R.; Watson, S.: Implementation of a perceptual controller for an inverted pendulum robot. J. Intell. Robot. Syst. 99, 683–692 (2020)CrossRef Johnson, T.; Zhou, S.; Cheah, W.; Mansell, W.; Young, R.; Watson, S.: Implementation of a perceptual controller for an inverted pendulum robot. J. Intell. Robot. Syst. 99, 683–692 (2020)CrossRef
21.
go back to reference Sun, J.: Control of rotary inverted pendulum using model-free backstepping technique. IEEE Access 7, 96965–96973 (2019)CrossRef Sun, J.: Control of rotary inverted pendulum using model-free backstepping technique. IEEE Access 7, 96965–96973 (2019)CrossRef
22.
go back to reference Barkat, A.; Hamayun, M.T.; Ijaz, S.; Akhtar, S.; Ansari, E.A.; Ghous, I.: Model identification and real-time implementation of a linear parameter–varying control scheme on lab-based inverted pendulum system. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 235(1), 30–38 (2021) Barkat, A.; Hamayun, M.T.; Ijaz, S.; Akhtar, S.; Ansari, E.A.; Ghous, I.: Model identification and real-time implementation of a linear parameter–varying control scheme on lab-based inverted pendulum system. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 235(1), 30–38 (2021)
23.
go back to reference Susanto, E.; Wibowo, A.S.; Rachman, E.G.: Fuzzy swing up control and optimal state feedback stabilization for self-erecting inverted pendulum. IEEE Access 8, 6496–6504 (2020)CrossRef Susanto, E.; Wibowo, A.S.; Rachman, E.G.: Fuzzy swing up control and optimal state feedback stabilization for self-erecting inverted pendulum. IEEE Access 8, 6496–6504 (2020)CrossRef
24.
go back to reference Ping, Z.; Hu, H.; Huang, Y.; Ge, S.; Lu, J.: Discrete-time neural network approach for tracking control of spherical inverted pendulum. IEEE Trans. Syst. Man Cybern. Syst. 50(8), 2989–2995 (2018) Ping, Z.; Hu, H.; Huang, Y.; Ge, S.; Lu, J.: Discrete-time neural network approach for tracking control of spherical inverted pendulum. IEEE Trans. Syst. Man Cybern. Syst. 50(8), 2989–2995 (2018)
25.
go back to reference Hassan, S.; Arkady, Z.; Yushchenko, S.; Navvabi, H.: Robust control based on adaptive neural network for rotary inverted pendulum with oscillation compensation. Neural Comput. Appl. 32(18), 14667–14679 (2020)CrossRef Hassan, S.; Arkady, Z.; Yushchenko, S.; Navvabi, H.: Robust control based on adaptive neural network for rotary inverted pendulum with oscillation compensation. Neural Comput. Appl. 32(18), 14667–14679 (2020)CrossRef
26.
go back to reference Chawla, I.; Singla, A.: ANFIS based system identification of underactuated systems. Int. J. Nonlinear Sci. Numer. Simul. 21(7–8), 649–660 (2020)MathSciNetCrossRef Chawla, I.; Singla, A.: ANFIS based system identification of underactuated systems. Int. J. Nonlinear Sci. Numer. Simul. 21(7–8), 649–660 (2020)MathSciNetCrossRef
27.
go back to reference Utkin, V.; Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of the IEEE conference on decision and control, pp. 4591–4596 (1996) Utkin, V.; Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of the IEEE conference on decision and control, pp. 4591–4596 (1996)
Metadata
Title
Real-Time Stabilization Control of a Rotary Inverted Pendulum Using LQR-Based Sliding Mode Controller
Authors
Ishan Chawla
Ashish Singla
Publication date
03-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 3/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05161-7

Other articles of this Issue 3/2021

Arabian Journal for Science and Engineering 3/2021 Go to the issue

Premium Partners