Skip to main content
Top
Published in: Neural Computing and Applications 4/2021

03-06-2020 | Original Article

Real-time state-of-health monitoring of lithium-ion battery with anomaly detection, Levenberg–Marquardt algorithm, and multiphase exponential regression model

Authors: Chinedu I. Ossai, Ifeanyi P. Egwutuoha

Published in: Neural Computing and Applications | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The state of health (SOH) of lithium-ion (Li+) battery prediction plays significant roles in battery management and the determination of the durability of the battery in service. This study used segmentation-type anomaly detection, the Levenberg–Marquardt (LM) algorithm, and multiphase exponential regression (MER) model to determine SOH of the Li+ batteries. By determining the changepoint boundaries using the characteristic values such as voltage transition rate (VTR), temperature transition rate (TTR), and charge capacities of the Li+ battery at the changepoint timestamps, we determined the parametric values of the biphasic MER. The characteristic transition rate values, which depend on the transition probabilities of the rolling standard deviations of the measured voltage and temperature, were later utilized with the matching charge capacities to model various training–testing dataset combinations. This helped to estimate the SOH of the battery at different life-cycle phases. This study also developed a technique for real-time estimation of the remaining useful life of the battery by using the MER model parameters, VTR, and TTR which were previously unseen parametric values of the Li+ battery. The result obtained from the proposed model indicates that our technique will be effective for online SOH estimation of Li+ batteries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Goebel K, Saha B, Saxena A, Celaya JR, Christophersen JP (2008) Prognostics in battery health management. IEEE Instrum Meas Mag 11(4):1CrossRef Goebel K, Saha B, Saxena A, Celaya JR, Christophersen JP (2008) Prognostics in battery health management. IEEE Instrum Meas Mag 11(4):1CrossRef
2.
go back to reference Cai L, Meng J, Stroe DI, Luo G, Teodorescu R (2019) An evolutionary framework for lithium-ion battery state of health estimation. J Power Sources 412:615–622CrossRef Cai L, Meng J, Stroe DI, Luo G, Teodorescu R (2019) An evolutionary framework for lithium-ion battery state of health estimation. J Power Sources 412:615–622CrossRef
3.
go back to reference Wang D, Miao Q, Pecht M (2013) Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. J Power Sources 239:253–264CrossRef Wang D, Miao Q, Pecht M (2013) Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. J Power Sources 239:253–264CrossRef
4.
go back to reference Wang X, Wei X, Dai H (2019) Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge. J Energy Storag 21:618–631CrossRef Wang X, Wei X, Dai H (2019) Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge. J Energy Storag 21:618–631CrossRef
5.
go back to reference Wang Z, Zeng S, Guo J, Qin T (2019) State of health estimation of lithium-ion batteries based on the constant voltage charging curve. Energy 167:661–669CrossRef Wang Z, Zeng S, Guo J, Qin T (2019) State of health estimation of lithium-ion batteries based on the constant voltage charging curve. Energy 167:661–669CrossRef
6.
go back to reference Xing Y, Ma EW, Tsui KL, Pecht M (2013) An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectron Reliab 53(6):811–820CrossRef Xing Y, Ma EW, Tsui KL, Pecht M (2013) An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectron Reliab 53(6):811–820CrossRef
7.
go back to reference Liu D, Pang J, Zhou J, Peng Y, Pecht M (2013) Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron Reliab 53(6):832–839CrossRef Liu D, Pang J, Zhou J, Peng Y, Pecht M (2013) Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron Reliab 53(6):832–839CrossRef
8.
go back to reference Li J, Zou L, Tian F, Dong X, Zou Z, Yang H (2016) Parameter identification of lithium-ion batteries model to predict discharge behaviors using heuristic algorithm. J Electrochem Soc 163(8):A1646–A1652CrossRef Li J, Zou L, Tian F, Dong X, Zou Z, Yang H (2016) Parameter identification of lithium-ion batteries model to predict discharge behaviors using heuristic algorithm. J Electrochem Soc 163(8):A1646–A1652CrossRef
9.
go back to reference Berecibar M, Gandiaga I, Villarreal I, Omar N, Van Mierlo J, Van den Bossche P (2016) Critical review of state of health estimation methods of Li-ion batteries for real applications. Renew Sustain Energy Rev 56:572–587CrossRef Berecibar M, Gandiaga I, Villarreal I, Omar N, Van Mierlo J, Van den Bossche P (2016) Critical review of state of health estimation methods of Li-ion batteries for real applications. Renew Sustain Energy Rev 56:572–587CrossRef
10.
go back to reference Eddahech A, Briat O, Bertrand N, Deletage JY, Vinassa JM (2012) Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. Int J Electr Power Energy Syst 42(1):487–494CrossRef Eddahech A, Briat O, Bertrand N, Deletage JY, Vinassa JM (2012) Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. Int J Electr Power Energy Syst 42(1):487–494CrossRef
11.
go back to reference Nuhic A, Terzimehic T, Soczka-Guth T, Buchholz M, Dietmayer K (2013) Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J Power Sources 239:680–688CrossRef Nuhic A, Terzimehic T, Soczka-Guth T, Buchholz M, Dietmayer K (2013) Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J Power Sources 239:680–688CrossRef
12.
go back to reference Klass V, Behm M, Lindbergh G (2014) A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. J Power Sources 270:262–272CrossRef Klass V, Behm M, Lindbergh G (2014) A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. J Power Sources 270:262–272CrossRef
13.
go back to reference Widodo A, Shim MC, Caesarendra W, Yang BS (2011) Intelligent prognostics for battery health monitoring based on sample entropy. Expert Syst Appl 38(9):11763–11769CrossRef Widodo A, Shim MC, Caesarendra W, Yang BS (2011) Intelligent prognostics for battery health monitoring based on sample entropy. Expert Syst Appl 38(9):11763–11769CrossRef
14.
go back to reference Lin HT, Liang TJ, Chen SM (2012) Estimation of battery state of health using probabilistic neural network. IEEE Trans Industr Inf 9(2):679–685CrossRef Lin HT, Liang TJ, Chen SM (2012) Estimation of battery state of health using probabilistic neural network. IEEE Trans Industr Inf 9(2):679–685CrossRef
15.
go back to reference Kim J, Lee S, Cho BH (2011) Complementary cooperation algorithm based on DEKF combined with pattern recognition for SOC/capacity estimation and SOH prediction. IEEE Trans Power Electron 27(1):436–451CrossRef Kim J, Lee S, Cho BH (2011) Complementary cooperation algorithm based on DEKF combined with pattern recognition for SOC/capacity estimation and SOH prediction. IEEE Trans Power Electron 27(1):436–451CrossRef
16.
go back to reference Andre D, Nuhic A, Soczka-Guth T, Sauer DU (2013) Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electric vehicles. Eng Appl Artif Intell 26(3):951–961CrossRef Andre D, Nuhic A, Soczka-Guth T, Sauer DU (2013) Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electric vehicles. Eng Appl Artif Intell 26(3):951–961CrossRef
17.
go back to reference Remmlinger J, Buchholz M, Meiler M, Bernreuter P, Dietmayer K (2011) State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation. J Power Sources 196(12):5357–5363CrossRef Remmlinger J, Buchholz M, Meiler M, Bernreuter P, Dietmayer K (2011) State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation. J Power Sources 196(12):5357–5363CrossRef
18.
go back to reference Feng X, Li J, Ouyang M, Lu L, Li J, He X (2013) Using probability density function to evaluate the state of health of lithium-ion batteries. J Power Sources 232:209–218CrossRef Feng X, Li J, Ouyang M, Lu L, Li J, He X (2013) Using probability density function to evaluate the state of health of lithium-ion batteries. J Power Sources 232:209–218CrossRef
19.
go back to reference Ng SS, Xing Y, Tsui KL (2014) A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl Energy 118:114–123CrossRef Ng SS, Xing Y, Tsui KL (2014) A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl Energy 118:114–123CrossRef
20.
go back to reference Andre D, Appel C, Soczka-Guth T, Sauer DU (2013) Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J Power Sources 224:20–27CrossRef Andre D, Appel C, Soczka-Guth T, Sauer DU (2013) Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J Power Sources 224:20–27CrossRef
21.
go back to reference Samadi MF, Alavi SM, Saif M (2013) Online state and parameter estimation of the Li-ion battery in a Bayesian framework. In: 2013 American Control Conference, pp 4693–4698. IEEE Samadi MF, Alavi SM, Saif M (2013) Online state and parameter estimation of the Li-ion battery in a Bayesian framework. In: 2013 American Control Conference, pp 4693–4698. IEEE
23.
go back to reference Yuan S, Wu H, Zhang X, Yin C (2013) Online estimation of electrochemical impedance spectra for lithium-ion batteries via discrete fractional order model. In: 2013 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, pp 1–6) Yuan S, Wu H, Zhang X, Yin C (2013) Online estimation of electrochemical impedance spectra for lithium-ion batteries via discrete fractional order model. In: 2013 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, pp 1–6)
24.
go back to reference Novais S, Nascimento M, Grande L, Domingues MF, Antunes P, Alberto N, Leitão C, Oliveira R, Koch S, Kim GT, Passerini S (2016) Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors. Sensors 16(9):1394CrossRef Novais S, Nascimento M, Grande L, Domingues MF, Antunes P, Alberto N, Leitão C, Oliveira R, Koch S, Kim GT, Passerini S (2016) Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors. Sensors 16(9):1394CrossRef
25.
go back to reference Nascimento M, Novais S, Leitão C, Domingues MF, Alberto N, Antunes P, Pinto JL (2015) Lithium batteries temperature and strain fiber monitoring. In: 24th International Conference on Optical Fibre Sensors. International Society for Optics and Photonics, vol 9634, p 96347V Nascimento M, Novais S, Leitão C, Domingues MF, Alberto N, Antunes P, Pinto JL (2015) Lithium batteries temperature and strain fiber monitoring. In: 24th International Conference on Optical Fibre Sensors. International Society for Optics and Photonics, vol 9634, p 96347V
26.
go back to reference Hu X, Li SE, Yang Y (2016) Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles. IEEE Trans Transp Electrific 2(2):140–149CrossRef Hu X, Li SE, Yang Y (2016) Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles. IEEE Trans Transp Electrific 2(2):140–149CrossRef
27.
go back to reference Leng F, Tan CM, Pecht M (2015) Effect of temperature on the aging rate of Li ion battery operating above room temperature. Sci Rep 5:12967CrossRef Leng F, Tan CM, Pecht M (2015) Effect of temperature on the aging rate of Li ion battery operating above room temperature. Sci Rep 5:12967CrossRef
28.
go back to reference Bodenes L, Naturel R, Martinez H, Dedryvère R, Menetrier M, Croguennec L, Pérès JP, Tessier C, Fischer F (2013) Lithium secondary batteries working at very high temperature: capacity fade and understanding of aging mechanisms. J Power Sources 236:265–275CrossRef Bodenes L, Naturel R, Martinez H, Dedryvère R, Menetrier M, Croguennec L, Pérès JP, Tessier C, Fischer F (2013) Lithium secondary batteries working at very high temperature: capacity fade and understanding of aging mechanisms. J Power Sources 236:265–275CrossRef
29.
go back to reference Wu Y, Keil P, Schuster SF, Jossen A (2017) Impact of temperature and discharge rate on the aging of a LiCoO2/LiNi0. 8Co0. 15Al0. 05O2 lithium-ion pouch cell. J Electrochem Soc 164(7):A1438–A1445CrossRef Wu Y, Keil P, Schuster SF, Jossen A (2017) Impact of temperature and discharge rate on the aging of a LiCoO2/LiNi0. 8Co0. 15Al0. 05O2 lithium-ion pouch cell. J Electrochem Soc 164(7):A1438–A1445CrossRef
30.
go back to reference Waldmann T, Wilka M, Kasper M, Fleischhammer M, Wohlfahrt-Mehrens M (2014) Temperature dependent ageing mechanisms in Lithium-ion batteries—a post-mortem study. J Power Sources 262:129–135CrossRef Waldmann T, Wilka M, Kasper M, Fleischhammer M, Wohlfahrt-Mehrens M (2014) Temperature dependent ageing mechanisms in Lithium-ion batteries—a post-mortem study. J Power Sources 262:129–135CrossRef
31.
go back to reference Barai A, Widanage WD, McGordon A, Jennings P (2016) The influence of temperature and charge-discharge rate on open circuit voltage hysteresis of an LFP Li-ion battery. In: 2016 IEEE transportation electrification conference and expo (ITEC). IEEE, pp 1–4 Barai A, Widanage WD, McGordon A, Jennings P (2016) The influence of temperature and charge-discharge rate on open circuit voltage hysteresis of an LFP Li-ion battery. In: 2016 IEEE transportation electrification conference and expo (ITEC). IEEE, pp 1–4
32.
go back to reference Zhang SS (2012) Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J Electrochem Soc 159(7):A920–A923CrossRef Zhang SS (2012) Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J Electrochem Soc 159(7):A920–A923CrossRef
33.
go back to reference Mathew M, Janhunen S, Rashid M, Long F, Fowler M (2018) Comparative analysis of lithium-ion battery resistance estimation techniques for battery management systems. Energies 11(6):1490CrossRef Mathew M, Janhunen S, Rashid M, Long F, Fowler M (2018) Comparative analysis of lithium-ion battery resistance estimation techniques for battery management systems. Energies 11(6):1490CrossRef
35.
go back to reference Fryzlewicz P (2007) Unbalanced Haar technique for nonparametric function estimation. J Am Stat Assoc 102(480):1318–1327MathSciNetCrossRef Fryzlewicz P (2007) Unbalanced Haar technique for nonparametric function estimation. J Am Stat Assoc 102(480):1318–1327MathSciNetCrossRef
36.
go back to reference Mo B, Yu J, Tang D, Liu H (2016) A remaining useful life prediction approach for lithium-ion batteries using Kalman filter and an improved particle filter. In: IEEE International conference on prognostics and health management (ICPHM), 2016. IEEE, pp 1–5 Mo B, Yu J, Tang D, Liu H (2016) A remaining useful life prediction approach for lithium-ion batteries using Kalman filter and an improved particle filter. In: IEEE International conference on prognostics and health management (ICPHM), 2016. IEEE, pp 1–5
37.
go back to reference He W, Williard N, Osterman M, Pecht M (2011) Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. J Power Sources 196(23):10314–10321CrossRef He W, Williard N, Osterman M, Pecht M (2011) Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. J Power Sources 196(23):10314–10321CrossRef
38.
go back to reference Davis PJ, Rabinowitz P (2007) Methods of numerical integration: courier dover publications. eBook ISBN: 9781483264288 Davis PJ, Rabinowitz P (2007) Methods of numerical integration: courier dover publications. eBook ISBN: 9781483264288
39.
go back to reference Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168MathSciNetCrossRef Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168MathSciNetCrossRef
40.
go back to reference Marquardt D (1963) An algorithm for the least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(2):431–441MathSciNetCrossRef Marquardt D (1963) An algorithm for the least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(2):431–441MathSciNetCrossRef
41.
go back to reference Ampazis N, Perantonis SJ (2000) Levenberg-Marquardt algorithm with adaptive momentum for the efficient training of feedforward networks. In: Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks, 2000, vol 1. IJCNN 2000. IEEE, pp 126–131 Ampazis N, Perantonis SJ (2000) Levenberg-Marquardt algorithm with adaptive momentum for the efficient training of feedforward networks. In: Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks, 2000, vol 1. IJCNN 2000. IEEE, pp 126–131
42.
go back to reference Ahmadi M, Mojallali H (2011) Identification of multiple-input single-output Hammerstein models using Bezier curves and Bernstein polynomials. Appl Math Model 35(4):1969–1982MathSciNetCrossRef Ahmadi M, Mojallali H (2011) Identification of multiple-input single-output Hammerstein models using Bezier curves and Bernstein polynomials. Appl Math Model 35(4):1969–1982MathSciNetCrossRef
44.
go back to reference Miao Q, Xie L, Cui H, Liang W, Pecht M (2013) Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron Reliab 53(6):805–810CrossRef Miao Q, Xie L, Cui H, Liang W, Pecht M (2013) Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron Reliab 53(6):805–810CrossRef
45.
go back to reference Liu D, Wang H, Peng Y, Xie W, Liao H (2013) Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction. Energies 6(8):3654–3668CrossRef Liu D, Wang H, Peng Y, Xie W, Liao H (2013) Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction. Energies 6(8):3654–3668CrossRef
46.
go back to reference Liu D, Luo Y, Liu J, Peng Y, Guo L, Pecht M (2014) Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm. Neural Comput Appl 25(3–4):557–572CrossRef Liu D, Luo Y, Liu J, Peng Y, Guo L, Pecht M (2014) Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm. Neural Comput Appl 25(3–4):557–572CrossRef
47.
go back to reference Charkhgard M, Farrokhi M (2010) State-of-charge estimation for lithium-ion batteries using neural networks and EKF. IEEE Trans Industr Electron 57(12):4178–4187CrossRef Charkhgard M, Farrokhi M (2010) State-of-charge estimation for lithium-ion batteries using neural networks and EKF. IEEE Trans Industr Electron 57(12):4178–4187CrossRef
48.
go back to reference Chemali E, Kollmeyer PJ, Preindl M, Emadi A (2018) State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach. J Power Sources 400:242–255CrossRef Chemali E, Kollmeyer PJ, Preindl M, Emadi A (2018) State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach. J Power Sources 400:242–255CrossRef
Metadata
Title
Real-time state-of-health monitoring of lithium-ion battery with anomaly detection, Levenberg–Marquardt algorithm, and multiphase exponential regression model
Authors
Chinedu I. Ossai
Ifeanyi P. Egwutuoha
Publication date
03-06-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 4/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05031-1

Other articles of this Issue 4/2021

Neural Computing and Applications 4/2021 Go to the issue

Premium Partner