Skip to main content
Top
Published in:

18-05-2024

Real-Time Urban Flood Depth Mapping: Convolutional Neural Networks for Pluvial and Fluvial Flood Emulation

Authors: Maelaynayn El baida, Farid Boushaba, Mimoun Chourak, Mohamed Hosni

Published in: Water Resources Management | Issue 12/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The flood-prone city of Zaio in Morocco necessitates a precise, fast, real-time flood depth mapping model due to its recurrent flood history. Whether it’s the exclusive prediction of one flood category, relying on hard-to-measure inputs like flood hydrographs, or employing less accurate training methods such as cellular automata models, the existing Convolutional Neural Network (CNN) models face limitations in predicting flood depth in a city whose flood dynamics are influenced by outer watersheds such as Zaio. This study addresses these issues by introducing a CNN tailored for real-time pluvial and fluvial flood depth mapping in Zaio at fine resolution (2 m). Training involved eight rainfall hyetographs, with four used for testing. The model’s validation included three “unseen” rainfall distribution patterns. The proposed CNN seamlessly connects rainfall-runoff modeling and hydrodynamic 2D flood depth simulation, with a novelty of predicting both pluvial and fluvial flood depth, and reducing computational time by a significant 99.17%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Zheng X (2016) TensorFlow: A System for Large-Scale Machine Learning. Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, 265–283 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Zheng X (2016) TensorFlow: A System for Large-Scale Machine Learning. Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, 265–283
go back to reference Boushaba F, Grari A, Chourak M, Regad Y, Elkihel B (2021) Numerical Simulation of the Flood Risk of the Deviation Hydraulic Structure at Saidia (North-East Morocco). In B. Hajji, A. Mellit, G. Marco Tina, A. Rabhi, J. Launay, & S. E. Naimi (Eds.), Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems (pp. 659–665). Springer Singapore Boushaba F, Grari A, Chourak M, Regad Y, Elkihel B (2021) Numerical Simulation of the Flood Risk of the Deviation Hydraulic Structure at Saidia (North-East Morocco). In B. Hajji, A. Mellit, G. Marco Tina, A. Rabhi, J. Launay, & S. E. Naimi (Eds.), Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems (pp. 659–665). Springer Singapore
go back to reference Costabile P, Costanzo C, Kalogiros J, Bellos V (2023) Toward Street-Level Nowcasting of Flash floods impacts based on HPC Hydrodynamic Modeling at the Watershed Scale and High-Resolution Weather Radar Data. Water Resour Res 59(10). https://doi.org/10.1029/2023WR034599. e2023WR034599 Costabile P, Costanzo C, Kalogiros J, Bellos V (2023) Toward Street-Level Nowcasting of Flash floods impacts based on HPC Hydrodynamic Modeling at the Watershed Scale and High-Resolution Weather Radar Data. Water Resour Res 59(10). https://​doi.​org/​10.​1029/​2023WR034599. e2023WR034599
go back to reference Maas AL (2013) Rectifier Nonlinearities Improve Neural Network Acoustic Models Maas AL (2013) Rectifier Nonlinearities Improve Neural Network Acoustic Models
go back to reference Mahesh RB, Leandro J, Lin Q (2022) Physics Informed Neural Network for spatial-temporal Flood forecasting. In: Kolathayar S, Mondal A, Chian SC (eds) Climate Change and Water Security. Springer Singapore, pp 77–91 Mahesh RB, Leandro J, Lin Q (2022) Physics Informed Neural Network for spatial-temporal Flood forecasting. In: Kolathayar S, Mondal A, Chian SC (eds) Climate Change and Water Security. Springer Singapore, pp 77–91
go back to reference Nair V, E. Hinton G (2010) Rectified Linear Units improve restricted Boltzmann machines. Proc 27th Int Conf Int Conf Mach Learn 807:814 Nair V, E. Hinton G (2010) Rectified Linear Units improve restricted Boltzmann machines. Proc 27th Int Conf Int Conf Mach Learn 807:814
go back to reference Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY (2011) Multimodal Deep Learning. Proceedings of the 28th International Conference on International Conference on Machine Learning, 689–696 Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY (2011) Multimodal Deep Learning. Proceedings of the 28th International Conference on International Conference on Machine Learning, 689–696
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015. Springer International Publishing, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015. Springer International Publishing, pp 234–241
go back to reference Tran VN, Dinh DD, Pham BDH, Dang KD, Anh TN, Ngoc HN, Nguyen GT (2024) Data-Driven Dam Outflow Prediction using deep learning with simultaneous selection of Input predictors and hyperparameters using the bayesian optimization algorithm. Water Resour Manage 38(2):401–421. https://doi.org/10.1007/s11269-023-03677-9CrossRef Tran VN, Dinh DD, Pham BDH, Dang KD, Anh TN, Ngoc HN, Nguyen GT (2024) Data-Driven Dam Outflow Prediction using deep learning with simultaneous selection of Input predictors and hyperparameters using the bayesian optimization algorithm. Water Resour Manage 38(2):401–421. https://​doi.​org/​10.​1007/​s11269-023-03677-9CrossRef
go back to reference Wang Y, Shen Y, Salahshour B, Cetin M, Iftekharuddin K, Tahvildari N, Huang G, Harris DK, Ampofo K, Goodall JL (2023) Urban flood extent segmentation and evaluation from real-world surveillance camera images using deep convolutional neural network. Environ Model Softw 105939. https://doi.org/10.1016/j.envsoft.2023.105939 Wang Y, Shen Y, Salahshour B, Cetin M, Iftekharuddin K, Tahvildari N, Huang G, Harris DK, Ampofo K, Goodall JL (2023) Urban flood extent segmentation and evaluation from real-world surveillance camera images using deep convolutional neural network. Environ Model Softw 105939. https://​doi.​org/​10.​1016/​j.​envsoft.​2023.​105939
Metadata
Title
Real-Time Urban Flood Depth Mapping: Convolutional Neural Networks for Pluvial and Fluvial Flood Emulation
Authors
Maelaynayn El baida
Farid Boushaba
Mimoun Chourak
Mohamed Hosni
Publication date
18-05-2024
Publisher
Springer Netherlands
Published in
Water Resources Management / Issue 12/2024
Print ISSN: 0920-4741
Electronic ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-024-03886-w