Skip to main content
Top

2019 | OriginalPaper | Chapter

Recent Advancements in Computing Reliable Binding Free Energies in Drug Discovery Projects

Authors : N. Arul Murugan, Vasanthanathan Poongavanam, U. Deva Priyakumar

Published in: Structural Bioinformatics: Applications in Preclinical Drug Discovery Process

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent times, our healthcare system is being challenged by many drug-resistant microorganisms and ageing-associated diseases for which we do not have any drugs or drugs with poor therapeutic profile. With pharmaceutical technological advancements, increasing computational power and growth of related biomedical fields, there have been dramatic increase in the number of drugs approved in general, but still way behind in drug discovery for certain class of diseases. Now, we have access to bigger genomics database, better biophysical methods,  and knowledge about chemical space with which we should be able to easily explore and predict synthetically feasible compounds for the lead optimization process. In this chapter, we discuss the limitations and highlights of currently available computational methods used for protein–ligand binding affinities estimation and this includes force-field, ab initio electronic structure theory and machine learning approaches. Since the electronic structure-based approach cannot be applied to systems of larger length scale, the free energy methods based on this employ certain approximations, and these have been discussed in detail in this chapter. Recently, the methods based on electronic structure theory and machine learning approaches also are successfully being used to compute protein–ligand binding affinities and other pharmacokinetic and pharmacodynamic properties and so have greater potential to take forward computer-aided drug discovery to newer heights.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rask-Andersen M, Almen MS, Schioth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590PubMedCrossRef Rask-Andersen M, Almen MS, Schioth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590PubMedCrossRef
2.
go back to reference Lenz GR, Nash HM, Jindal S (2000) Chemical ligands, genomics and drug discovery. Drug Discov Today 5(4):145–156PubMedCrossRef Lenz GR, Nash HM, Jindal S (2000) Chemical ligands, genomics and drug discovery. Drug Discov Today 5(4):145–156PubMedCrossRef
3.
4.
6.
go back to reference Caldwell GW (2000) Compound optimization in early-and late-phase drug discovery: acceptable pharmacokinetic properties utilizing combined physicochemical, in vitro and in vivo screens. Curr Opin Drug Discov Devel 3(1):30–41PubMed Caldwell GW (2000) Compound optimization in early-and late-phase drug discovery: acceptable pharmacokinetic properties utilizing combined physicochemical, in vitro and in vivo screens. Curr Opin Drug Discov Devel 3(1):30–41PubMed
7.
go back to reference Zamora I, Oprea T, Cruciani G, Pastor M, Ungell AL (2003) Surface descriptors for protein— ligand affinity prediction. J Med Chem 46(1):25–33PubMedCrossRef Zamora I, Oprea T, Cruciani G, Pastor M, Ungell AL (2003) Surface descriptors for protein— ligand affinity prediction. J Med Chem 46(1):25–33PubMedCrossRef
8.
go back to reference De Waterbeemd Van, Han Eric Gifford (2003) ADMET in silico modelling: towards prediction paradise. Nat Rev Drug Discov 2(3):192–204PubMedCrossRef De Waterbeemd Van, Han Eric Gifford (2003) ADMET in silico modelling: towards prediction paradise. Nat Rev Drug Discov 2(3):192–204PubMedCrossRef
9.
go back to reference Colmenarejo G (2003) Insilico prediction of drug-binding strengths to human serum albumin. Med Res Rev 23(3):275–301PubMedCrossRef Colmenarejo G (2003) Insilico prediction of drug-binding strengths to human serum albumin. Med Res Rev 23(3):275–301PubMedCrossRef
11.
go back to reference Vasanthanathan P, Hritz J, Taboureau O, Olsen L, Jorgensen FS, Vermeulen NPE, Oostenbrink C (2009) Virtual screening and prediction of site of metabolism for cytochrome P450 1A2 ligands. J Chem Inf Model 49:43–52PubMedCrossRef Vasanthanathan P, Hritz J, Taboureau O, Olsen L, Jorgensen FS, Vermeulen NPE, Oostenbrink C (2009) Virtual screening and prediction of site of metabolism for cytochrome P450 1A2 ligands. J Chem Inf Model 49:43–52PubMedCrossRef
12.
go back to reference Vasanthanathan P, Olsen L, Jorgensen FS, Vermeulen NPE, Oostenbrink C (2010) Calculation of Binding Free Energy for CYP1A2 Ligands by Using Empirical Free Energy Method. Drug Metab Dispos 38:1347–1354PubMedCrossRef Vasanthanathan P, Olsen L, Jorgensen FS, Vermeulen NPE, Oostenbrink C (2010) Calculation of Binding Free Energy for CYP1A2 Ligands by Using Empirical Free Energy Method. Drug Metab Dispos 38:1347–1354PubMedCrossRef
13.
14.
go back to reference Westergren J, Lindfors L, Höglund T, Lüder K, Nordholm S, Kjellander R (2007) In silico prediction of drug solubility: 1. Free energy of hydration. J Phys Chem 111(7):1872–1882CrossRef Westergren J, Lindfors L, Höglund T, Lüder K, Nordholm S, Kjellander R (2007) In silico prediction of drug solubility: 1. Free energy of hydration. J Phys Chem 111(7):1872–1882CrossRef
15.
go back to reference Rossi Sebastiano M, Doak BC, Backlund M, Poongavanam V, Over B, Ermondi G, Caron G, Matsson P, Kihlberg J (2018) Impact of dynamically exposed polarity on permeability and solubility of chameleonic drugs beyond the rule of 5. J Med Chem 61(9):4189–4202PubMedCrossRef Rossi Sebastiano M, Doak BC, Backlund M, Poongavanam V, Over B, Ermondi G, Caron G, Matsson P, Kihlberg J (2018) Impact of dynamically exposed polarity on permeability and solubility of chameleonic drugs beyond the rule of 5. J Med Chem 61(9):4189–4202PubMedCrossRef
16.
go back to reference Wan J, Zhang L, Yang GF, Zhan CG (2004) Quantitative structure-activity relationship for cyclic imide derivatives of protoporphyrinogen oxidase inhibitors: a study of quantum chemical descriptors from density functional theory. J Chem Inf Comput Sci 44:20CrossRef Wan J, Zhang L, Yang GF, Zhan CG (2004) Quantitative structure-activity relationship for cyclic imide derivatives of protoporphyrinogen oxidase inhibitors: a study of quantum chemical descriptors from density functional theory. J Chem Inf Comput Sci 44:20CrossRef
17.
go back to reference Hopfinger AJ, Pearlstein RA (1984) Molecular mechanics force-field parameterization procedures. J Comput Chem 5(5):486–99.99–2105CrossRef Hopfinger AJ, Pearlstein RA (1984) Molecular mechanics force-field parameterization procedures. J Comput Chem 5(5):486–99.99–2105CrossRef
18.
go back to reference Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc Chem Res 33:889–897PubMedCrossRef Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc Chem Res 33:889–897PubMedCrossRef
20.
go back to reference Wang W, Donini O, Reyes CM, Kollman PA (2001) Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct 30:211–243PubMedCrossRef Wang W, Donini O, Reyes CM, Kollman PA (2001) Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct 30:211–243PubMedCrossRef
21.
go back to reference Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov 18:113–135CrossRef Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov 18:113–135CrossRef
22.
go back to reference Wang C, Greene DA, Xiao L, Qi R, Luo R (2018) Recent developments and applications of the MMPBSA method. Front Mol Biosci 10(4):87CrossRef Wang C, Greene DA, Xiao L, Qi R, Luo R (2018) Recent developments and applications of the MMPBSA method. Front Mol Biosci 10(4):87CrossRef
23.
go back to reference Wang J, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 123(22):5221–5230PubMedCrossRef Wang J, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 123(22):5221–5230PubMedCrossRef
24.
go back to reference Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157PubMedPubMedCentralCrossRef Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157PubMedPubMedCentralCrossRef
25.
26.
go back to reference Stahl M, Rarey M (2001) Detailed analysis of scoring functions for virtual screening. J Med Chem 44:1035–1042PubMedCrossRef Stahl M, Rarey M (2001) Detailed analysis of scoring functions for virtual screening. J Med Chem 44:1035–1042PubMedCrossRef
27.
go back to reference Kellogg GE. (2006) In: Ekins S (ed) Computer applications in pharmaceutical research and development. Wiley, Hoboken, NJ Kellogg GE. (2006) In: Ekins S (ed) Computer applications in pharmaceutical research and development. Wiley, Hoboken, NJ
28.
go back to reference Binda C, Wang J, Pisani L, Caccia C, Carotti A, Salvati P, Edmondson DE, Mattevi A (2007) Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarinanalogs. J Med Chem 50(23):5848–5852PubMedCrossRef Binda C, Wang J, Pisani L, Caccia C, Carotti A, Salvati P, Edmondson DE, Mattevi A (2007) Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarinanalogs. J Med Chem 50(23):5848–5852PubMedCrossRef
29.
go back to reference De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A (2005) Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci 102(36):12684–12689PubMedCrossRefPubMedCentral De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A (2005) Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci 102(36):12684–12689PubMedCrossRefPubMedCentral
30.
go back to reference Ruddigkeit L, Van Deursen R, Blum LC, Reymond JL (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 52(11):2864–2875PubMedCrossRef Ruddigkeit L, Van Deursen R, Blum LC, Reymond JL (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 52(11):2864–2875PubMedCrossRef
31.
go back to reference Talele TT, Khedkar SA, Rigby AC (2010) Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr Top Med Chem 10(1):127–141PubMedCrossRef Talele TT, Khedkar SA, Rigby AC (2010) Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr Top Med Chem 10(1):127–141PubMedCrossRef
32.
go back to reference Nam MH, Park M, Park H, Kim Y, Yoon S, Sawant VS, Choi JW, Park JH, Park KD, Min SJ, Lee CJ (2017) Indole-substituted benzothiazoles and benzoxazoles as selective and reversible MAO-B inhibitors for treatment of Parkinson’s disease. ACS Chem Neurosci 8(7):1519–1529PubMedCrossRef Nam MH, Park M, Park H, Kim Y, Yoon S, Sawant VS, Choi JW, Park JH, Park KD, Min SJ, Lee CJ (2017) Indole-substituted benzothiazoles and benzoxazoles as selective and reversible MAO-B inhibitors for treatment of Parkinson’s disease. ACS Chem Neurosci 8(7):1519–1529PubMedCrossRef
33.
go back to reference Balamurugan K, Murugan NA, Ågren H (2016) Multistep modeling strategy to improve the binding affinity prediction of PET tracers to Aβ42: case study with styrylbenzoxazole derivatives. ACS Chem Neurosci 7(12):1698–1705PubMedCrossRef Balamurugan K, Murugan NA, Ågren H (2016) Multistep modeling strategy to improve the binding affinity prediction of PET tracers to Aβ42: case study with styrylbenzoxazole derivatives. ACS Chem Neurosci 7(12):1698–1705PubMedCrossRef
34.
go back to reference Murugan NA, Aidas K, Kongsted J, Rinkevicius Z, Agren H (2012) NMR spin-spin coupling constants in polymethine dyes as polarity indicators. Chem Eur J 18:11677–11684PubMedCrossRef Murugan NA, Aidas K, Kongsted J, Rinkevicius Z, Agren H (2012) NMR spin-spin coupling constants in polymethine dyes as polarity indicators. Chem Eur J 18:11677–11684PubMedCrossRef
35.
go back to reference Murugan NA, Kongsted J, Rinkevicius Z, Agren H (2012) Color modeling of protein optical probes. Phys Chem Chem Phys 14:1107–1112PubMedCrossRef Murugan NA, Kongsted J, Rinkevicius Z, Agren H (2012) Color modeling of protein optical probes. Phys Chem Chem Phys 14:1107–1112PubMedCrossRef
36.
go back to reference Ryde U, Soderhjelm P (2016) Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem Rev 116:5520–5566PubMedCrossRef Ryde U, Soderhjelm P (2016) Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem Rev 116:5520–5566PubMedCrossRef
37.
go back to reference Cavalli A, Carloni P, Recanatini M (2006) Target-related applications of first principles quantum chemical methods in drug design. Chem Rev 106:3497–3519PubMedCrossRef Cavalli A, Carloni P, Recanatini M (2006) Target-related applications of first principles quantum chemical methods in drug design. Chem Rev 106:3497–3519PubMedCrossRef
38.
go back to reference Nikitina E, Sulimov V, Zayets V, Zaitseva N (2004) Semiempirical calculations of binding enthalpy for protein—ligand complexes. Int J Quantum Chem 97:747–763CrossRef Nikitina E, Sulimov V, Zayets V, Zaitseva N (2004) Semiempirical calculations of binding enthalpy for protein—ligand complexes. Int J Quantum Chem 97:747–763CrossRef
39.
go back to reference Saen-oon S, Kuno M, Hannongbua S (2005) Binding energy analysis for wild-type and Y181C mutant HIV-1 RT/8-Cl TIBO complex structures: Quantum chemical calculations based on the ONIOM method. Proteins Struct Funct Bioinf 61(4):859–869CrossRef Saen-oon S, Kuno M, Hannongbua S (2005) Binding energy analysis for wild-type and Y181C mutant HIV-1 RT/8-Cl TIBO complex structures: Quantum chemical calculations based on the ONIOM method. Proteins Struct Funct Bioinf 61(4):859–869CrossRef
40.
go back to reference Perakyla M, Pakkanen TA (1994) Quantum mechanical model assembly study on the energetics of binding of arabinose, fucose, and galactose to L-arabinose-binding protein. Proteins Struct Funct Genet 20:367–372PubMedCrossRef Perakyla M, Pakkanen TA (1994) Quantum mechanical model assembly study on the energetics of binding of arabinose, fucose, and galactose to L-arabinose-binding protein. Proteins Struct Funct Genet 20:367–372PubMedCrossRef
41.
go back to reference Perakyla M, Pakkanen TA (1995) Model assembly study of the ligand binding by p-hydroxybenzoate hydroxylase: correlation between the calculated binding energies and the experimental dissociation constants. Proteins Struct Funct Genet 21:22–29PubMedCrossRef Perakyla M, Pakkanen TA (1995) Model assembly study of the ligand binding by p-hydroxybenzoate hydroxylase: correlation between the calculated binding energies and the experimental dissociation constants. Proteins Struct Funct Genet 21:22–29PubMedCrossRef
42.
go back to reference Nikitina E, Sulimov V, Grigoriev F, Kondakova O, Luschekina S (2006) Mixed implicit/explicit solvation models in quantum mechanical calculations of binding enthalpy for protein—ligand complexes. Int J Quantum Chem 106:1943–1963CrossRef Nikitina E, Sulimov V, Grigoriev F, Kondakova O, Luschekina S (2006) Mixed implicit/explicit solvation models in quantum mechanical calculations of binding enthalpy for protein—ligand complexes. Int J Quantum Chem 106:1943–1963CrossRef
43.
go back to reference Liao RZ, Thiel W (2012) Comparison of QM-only and QM/MM models for the mechanism of tungsten-dependent acetylene hydratase. J Chem Theory Comput 8(10):3793–3803PubMedCrossRef Liao RZ, Thiel W (2012) Comparison of QM-only and QM/MM models for the mechanism of tungsten-dependent acetylene hydratase. J Chem Theory Comput 8(10):3793–3803PubMedCrossRef
44.
go back to reference Fedorov DG, Kitaura K (2007) Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem 111:6904–6914CrossRef Fedorov DG, Kitaura K (2007) Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem 111:6904–6914CrossRef
45.
go back to reference Klumpp K, Hang JQ, Rajendran S, Yang Y, Derosier A et al (2003) Two metal ion mechanism of RNA cleavage by HIV RNase H and mechanism-based design of selective HIV RNase H inhibitors. Nucleic Acids Res 31:6852–6859PubMedPubMedCentralCrossRef Klumpp K, Hang JQ, Rajendran S, Yang Y, Derosier A et al (2003) Two metal ion mechanism of RNA cleavage by HIV RNase H and mechanism-based design of selective HIV RNase H inhibitors. Nucleic Acids Res 31:6852–6859PubMedPubMedCentralCrossRef
46.
go back to reference Budihas SR, Gorshkova I, Gaidamakov S, Wamiru A, Bona MK et al (2005) Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylatedtropolones. Nucleic Acids Res 33:1249–1256PubMedPubMedCentralCrossRef Budihas SR, Gorshkova I, Gaidamakov S, Wamiru A, Bona MK et al (2005) Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylatedtropolones. Nucleic Acids Res 33:1249–1256PubMedPubMedCentralCrossRef
47.
go back to reference Poongavanam V, Steinmann C, Kongsted J (2014) Inhibitor ranking through QM based chelation calculations for virtual screening of HIV-1 RNase H inhibition. PLoS ONE 9(6):e98659PubMedPubMedCentralCrossRef Poongavanam V, Steinmann C, Kongsted J (2014) Inhibitor ranking through QM based chelation calculations for virtual screening of HIV-1 RNase H inhibition. PLoS ONE 9(6):e98659PubMedPubMedCentralCrossRef
48.
go back to reference Poongavanam V, Corona A, Steinmann C, Scipione L, Grandi N, Pandolfi F, Santo RD, Esposito F, Tramontano E, Kongsted J (2018) Structure-guided approach identifies a novel class of HIV-1 ribonuclease H inhibitors: binding mode insights through magnesium complexation and site-directed mutagenesis studies. Med Chem Comm 9:562–575CrossRef Poongavanam V, Corona A, Steinmann C, Scipione L, Grandi N, Pandolfi F, Santo RD, Esposito F, Tramontano E, Kongsted J (2018) Structure-guided approach identifies a novel class of HIV-1 ribonuclease H inhibitors: binding mode insights through magnesium complexation and site-directed mutagenesis studies. Med Chem Comm 9:562–575CrossRef
49.
go back to reference Zhang Lei, Li Wei, Fang Tao, Li Shuhua (2017) accurate relative energies and binding energies of large ice-liquid water clusters and periodic structures. J Phys Chem 121(20):4030–4038CrossRef Zhang Lei, Li Wei, Fang Tao, Li Shuhua (2017) accurate relative energies and binding energies of large ice-liquid water clusters and periodic structures. J Phys Chem 121(20):4030–4038CrossRef
50.
go back to reference He X, Zhu T, Wang X, Liu J, Zhang JZ (2014) Fragment quantum mechanical calculation of proteins and its applications. Acc Chem Res 47(9):2748–2757PubMedCrossRef He X, Zhu T, Wang X, Liu J, Zhang JZ (2014) Fragment quantum mechanical calculation of proteins and its applications. Acc Chem Res 47(9):2748–2757PubMedCrossRef
51.
go back to reference Murugan NA, Nordberg A, Ågren H (2018) Different positron emission tomography tau tracers bind to multiple binding sites on the tau fibril: insight from computational modeling. ACS Chem Neurosci 9 (7):1757–1767PubMedCrossRef Murugan NA, Nordberg A, Ågren H (2018) Different positron emission tomography tau tracers bind to multiple binding sites on the tau fibril: insight from computational modeling. ACS Chem Neurosci 9 (7):1757–1767PubMedCrossRef
52.
go back to reference Yu YB, Privalov PL, Hodges RS (2001) Contribution of translational and rotational motions to molecular association in aqueous solution. Biophys J 81(3):1632–1642PubMedPubMedCentralCrossRef Yu YB, Privalov PL, Hodges RS (2001) Contribution of translational and rotational motions to molecular association in aqueous solution. Biophys J 81(3):1632–1642PubMedPubMedCentralCrossRef
53.
go back to reference von Lilienfeld OA (2018) Quantum machine learning in chemical compound space. Angew Chem Int Ed 57(16):4164–4169CrossRef von Lilienfeld OA (2018) Quantum machine learning in chemical compound space. Angew Chem Int Ed 57(16):4164–4169CrossRef
54.
go back to reference Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T (2018) The rise of deep learning in drug discovery. Drug Disco Today 23(6):1241–1250CrossRef Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T (2018) The rise of deep learning in drug discovery. Drug Disco Today 23(6):1241–1250CrossRef
55.
go back to reference Townshend RJ, Bedi R, Dror RO (2018) Generalizable protein interface prediction with end-to-end learning. arXiv preprint arXiv:1807.01297 Townshend RJ, Bedi R, Dror RO (2018) Generalizable protein interface prediction with end-to-end learning. arXiv preprint arXiv:​1807.​01297
56.
go back to reference Segler MH, Preuss M, Waller MP (2018) Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555(7698):604PubMedCrossRef Segler MH, Preuss M, Waller MP (2018) Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555(7698):604PubMedCrossRef
57.
go back to reference Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A (2018) Machine learning for molecular and materials science. Nature 559(7715):547PubMedCrossRef Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A (2018) Machine learning for molecular and materials science. Nature 559(7715):547PubMedCrossRef
58.
go back to reference Smith JS, Isayev O, Roitberg AE (2017) ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci 8(4):3192–3203PubMedPubMedCentralCrossRef Smith JS, Isayev O, Roitberg AE (2017) ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci 8(4):3192–3203PubMedPubMedCentralCrossRef
59.
go back to reference Chattopadhyay A, Zheng M, Waller MP, Priyakumar UD (2018) A probabilistic framework for constructing temporal relations in replica exchange molecular trajectories. J Chem Theory Comput 14(7):3365–3380PubMedCrossRef Chattopadhyay A, Zheng M, Waller MP, Priyakumar UD (2018) A probabilistic framework for constructing temporal relations in replica exchange molecular trajectories. J Chem Theory Comput 14(7):3365–3380PubMedCrossRef
60.
go back to reference Klepsch F, Vasanthanathan P, Ecker GF (2014) Ligand and structure-based classification models for Prediction of P-glycoprotein inhibitors. J Chem Inf Model 54:218–229PubMedCrossRef Klepsch F, Vasanthanathan P, Ecker GF (2014) Ligand and structure-based classification models for Prediction of P-glycoprotein inhibitors. J Chem Inf Model 54:218–229PubMedCrossRef
62.
go back to reference Vasanthanathan P, Lastdrager J, Oostenbrink C, Commandeur JNM, Vermeulen NPE, Jørgensen FS, Olsen Lars (2011) Identification of CYP1A2 ligands by structure-based and ligand-based virtual screening. Med Chem Comm 2:853–859CrossRef Vasanthanathan P, Lastdrager J, Oostenbrink C, Commandeur JNM, Vermeulen NPE, Jørgensen FS, Olsen Lars (2011) Identification of CYP1A2 ligands by structure-based and ligand-based virtual screening. Med Chem Comm 2:853–859CrossRef
63.
go back to reference Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Disco Today 20(3):318–331CrossRef Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Disco Today 20(3):318–331CrossRef
64.
go back to reference Colwell LJ (2018) Statistical and machine learning approaches to predicting protein-ligand interactions. Curr Opin Struct Biol 49:123–128PubMedCrossRef Colwell LJ (2018) Statistical and machine learning approaches to predicting protein-ligand interactions. Curr Opin Struct Biol 49:123–128PubMedCrossRef
65.
go back to reference Wójcikowski M, Ballester PJ, Siedlecki P (2017) Performance of machine-learning scoring functions in structure-based virtual screening. Sci Rep 7:46710PubMedPubMedCentralCrossRef Wójcikowski M, Ballester PJ, Siedlecki P (2017) Performance of machine-learning scoring functions in structure-based virtual screening. Sci Rep 7:46710PubMedPubMedCentralCrossRef
66.
go back to reference Kinnings SL, Liu N, Tonge PJ, Jackson RM, Xie L, Bourne PE (2011) A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Model 51(2):408–419PubMedPubMedCentralCrossRef Kinnings SL, Liu N, Tonge PJ, Jackson RM, Xie L, Bourne PE (2011) A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Model 51(2):408–419PubMedPubMedCentralCrossRef
67.
69.
go back to reference Lo YC, Rensi SE, Torng W, Altman RB (2018) Machine learning in chemoinformatics and drug discovery. Drug Disco Today 23(8):1538–1546.MCrossRef Lo YC, Rensi SE, Torng W, Altman RB (2018) Machine learning in chemoinformatics and drug discovery. Drug Disco Today 23(8):1538–1546.MCrossRef
Metadata
Title
Recent Advancements in Computing Reliable Binding Free Energies in Drug Discovery Projects
Authors
N. Arul Murugan
Vasanthanathan Poongavanam
U. Deva Priyakumar
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05282-9_7

Premium Partner