Skip to main content
Top

2021 | OriginalPaper | Chapter

Recent Advances in Counting and Sampling Markov Equivalent DAGs

Authors : Marcel Wienöbst, Max Bannach, Maciej Liśkiewicz

Published in: KI 2021: Advances in Artificial Intelligence

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Counting and sampling directed acyclic graphs (DAGs) from a Markov equivalence class are fundamental tasks in graphical causal analysis. In this paper, we discuss recently proposed polynomial-time algorithms for these tasks. The presented result solves a long-standing open problem in graphical modelling. Experiments show that the proposed algorithms are implementable and effective in practice. Our paper is an extended abstract of the work [24], honored as an AAAI-21 Distinguished Paper at the 35th AAAI Conference on Artificial Intelligence.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference AhmadiTeshnizi, A., Salehkaleybar, S., Kiyavash, N.: Lazyiter: a fast algorithm for counting Markov equivalent DAGs and designing experiments. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020 (2020) AhmadiTeshnizi, A., Salehkaleybar, S., Kiyavash, N.: Lazyiter: a fast algorithm for counting Markov equivalent DAGs and designing experiments. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020 (2020)
2.
go back to reference Andersson, S.A., Madigan, D., Perlman, M.D.: A characterization of Markov equivalence classes for acyclic digraphs. Ann. Stat. 25(2), 505–541 (1997)MathSciNetMATH Andersson, S.A., Madigan, D., Perlman, M.D.: A characterization of Markov equivalence classes for acyclic digraphs. Ann. Stat. 25(2), 505–541 (1997)MathSciNetMATH
3.
go back to reference Chickering, D.M.: Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2, 445–498 (2002)MathSciNetMATH Chickering, D.M.: Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2, 445–498 (2002)MathSciNetMATH
4.
go back to reference Chickering, D.M.: Optimal structure identification with greedy search. J. Mach. Learn. Res. 3, 507–554 (2002)MathSciNetMATH Chickering, D.M.: Optimal structure identification with greedy search. J. Mach. Learn. Res. 3, 507–554 (2002)MathSciNetMATH
5.
go back to reference Ganian, R., Hamm, T., Talvitie, T.: An efficient algorithm for counting Markov equivalent dags. In: Proccedings of the 34th Conference on Artificial Intelligence, AAAI 2020, pp. 10136–10143 (2020) Ganian, R., Hamm, T., Talvitie, T.: An efficient algorithm for counting Markov equivalent dags. In: Proccedings of the 34th Conference on Artificial Intelligence, AAAI 2020, pp. 10136–10143 (2020)
6.
go back to reference Ghassami, A., Salehkaleybar, S., Kiyavash, N., Bareinboim, E.: Budgeted experiment design for causal structure learning. In: Proceedings of the 35th International Conference on Machine Learning, ICML 2018, pp. 1719–1728 (2018) Ghassami, A., Salehkaleybar, S., Kiyavash, N., Bareinboim, E.: Budgeted experiment design for causal structure learning. In: Proceedings of the 35th International Conference on Machine Learning, ICML 2018, pp. 1719–1728 (2018)
7.
go back to reference Ghassami, A., Salehkaleybar, S., Kiyavash, N., Zhang, K.: Counting and sampling from Markovv equivalent dags using clique trees. In: Proceedings of the 33th Conference on Artificial Intelligence, AAAI 2019, pp. 3664–3671 (2019) Ghassami, A., Salehkaleybar, S., Kiyavash, N., Zhang, K.: Counting and sampling from Markovv equivalent dags using clique trees. In: Proceedings of the 33th Conference on Artificial Intelligence, AAAI 2019, pp. 3664–3671 (2019)
8.
go back to reference Hauser, A., Bühlmann, P.: Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res. 13, 2409–2464 (2012)MathSciNetMATH Hauser, A., Bühlmann, P.: Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res. 13, 2409–2464 (2012)MathSciNetMATH
9.
go back to reference He, Y.B., Geng, Z.: Active learning of causal networks with intervention experiments and optimal designs. J. Mach. Learn. Res. 9(Nov), 2523–2547 (2008) He, Y.B., Geng, Z.: Active learning of causal networks with intervention experiments and optimal designs. J. Mach. Learn. Res. 9(Nov), 2523–2547 (2008)
10.
go back to reference He, Y., Jia, J., Yu, B.: Counting and exploring sizes of Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res. 16(79), 2589–2609 (2015)MathSciNetMATH He, Y., Jia, J., Yu, B.: Counting and exploring sizes of Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res. 16(79), 2589–2609 (2015)MathSciNetMATH
11.
go back to reference Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)MATH Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)MATH
12.
go back to reference Koller, D., Friedman, N.: Probabilistic Graphical Models - Principles and Techniques. MIT Press, Cambridge (2009) Koller, D., Friedman, N.: Probabilistic Graphical Models - Principles and Techniques. MIT Press, Cambridge (2009)
13.
go back to reference Maathuis, M.H., Kalisch, M., Bühlmann, P.: Estimating high-dimensional intervention effects from observational data. Ann. Stat. 37(6A), 3133–3164 (2009)MathSciNetCrossRef Maathuis, M.H., Kalisch, M., Bühlmann, P.: Estimating high-dimensional intervention effects from observational data. Ann. Stat. 37(6A), 3133–3164 (2009)MathSciNetCrossRef
14.
go back to reference Madigan, D., Andersson, S.A., Perlman, M.D., Volinsky, C.T.: Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs. Commun. Stat. Theory Methods 25(11), 2493–2519 (1996)CrossRef Madigan, D., Andersson, S.A., Perlman, M.D., Volinsky, C.T.: Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs. Commun. Stat. Theory Methods 25(11), 2493–2519 (1996)CrossRef
15.
go back to reference Meek, C.: Causal inference and causal explanation with background knowledge. In: Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, UAI 1995, pp. 403–410 (1995) Meek, C.: Causal inference and causal explanation with background knowledge. In: Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, UAI 1995, pp. 403–410 (1995)
16.
go back to reference Meek, C.: Graphical Models: Selecting Causal and Statistical Models. Ph.D. thesis, Carnegie Mellon University (1997) Meek, C.: Graphical Models: Selecting Causal and Statistical Models. Ph.D. thesis, Carnegie Mellon University (1997)
17.
go back to reference Pearl, J.: Causality. Cambridge University Press, Cambridge (2009) Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)
18.
go back to reference Perković, E., Textor, J., Kalisch, M., Maathuis, M.H.: Complete graphical characterization and construction of adjustment sets in Markov equivalence classes of ancestral graphs. J. Mach. Learn. Res. 18, 220:1–220:62 (2017) Perković, E., Textor, J., Kalisch, M., Maathuis, M.H.: Complete graphical characterization and construction of adjustment sets in Markov equivalence classes of ancestral graphs. J. Mach. Learn. Res. 18, 220:1–220:62 (2017)
19.
go back to reference Shanmugam, K., Kocaoglu, M., Dimakis, A.G., Vishwanath, S.: Learning causal graphs with small interventions. In: Processing of the 28th Annual Conference on Neural Information Processing Systems, NIPS 2015, pp. 3195–3203 (2015) Shanmugam, K., Kocaoglu, M., Dimakis, A.G., Vishwanath, S.: Learning causal graphs with small interventions. In: Processing of the 28th Annual Conference on Neural Information Processing Systems, NIPS 2015, pp. 3195–3203 (2015)
20.
go back to reference Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, Second Edition. MIT Press, Cambridge (2000) Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, Second Edition. MIT Press, Cambridge (2000)
21.
go back to reference Talvitie, T., Koivisto, M.: Counting and sampling Markov equivalent directed acyclic graphs. In: Proceedings of the 33th Conference on Artificial Intelligence, AAAI 2019, pp. 7984–7991 (2019) Talvitie, T., Koivisto, M.: Counting and sampling Markov equivalent directed acyclic graphs. In: Proceedings of the 33th Conference on Artificial Intelligence, AAAI 2019, pp. 7984–7991 (2019)
22.
go back to reference Verma, T., Pearl, J.: Equivalence and synthesis of causal models. In: Proceedings of the 6th Annual Conference on Uncertainty in Artificial Intelligence, UAI 1990, pp. 255–270 (1990) Verma, T., Pearl, J.: Equivalence and synthesis of causal models. In: Proceedings of the 6th Annual Conference on Uncertainty in Artificial Intelligence, UAI 1990, pp. 255–270 (1990)
23.
go back to reference Verma, T., Pearl, J.: An algorithm for deciding if a set of observed independencies has a causal explanation. In: Proceedings of the 8th Annual Conference on Uncertainty in Artificial Intelligence, UAI 1992, pp. 323–330 (1992) Verma, T., Pearl, J.: An algorithm for deciding if a set of observed independencies has a causal explanation. In: Proceedings of the 8th Annual Conference on Uncertainty in Artificial Intelligence, UAI 1992, pp. 323–330 (1992)
24.
go back to reference Wienöbst, M., Bannach, M., Liśkiewicz, M.: Polynomial-time algorithms for counting and sampling Markov equivalent dags. In: Proccedings of the 35th Conference on Artificial Intelligence, AAAI 2021 (2021, in press) Wienöbst, M., Bannach, M., Liśkiewicz, M.: Polynomial-time algorithms for counting and sampling Markov equivalent dags. In: Proccedings of the 35th Conference on Artificial Intelligence, AAAI 2021 (2021, in press)
25.
go back to reference van der Zander, B., Liśkiewicz, M.: Separators and adjustment sets in Markov equivalent dags. In: Proceedings of the 30th Conference on Artificial Intelligence, AAAI 2016, pp. 3315–3321 (2016) van der Zander, B., Liśkiewicz, M.: Separators and adjustment sets in Markov equivalent dags. In: Proceedings of the 30th Conference on Artificial Intelligence, AAAI 2016, pp. 3315–3321 (2016)
Metadata
Title
Recent Advances in Counting and Sampling Markov Equivalent DAGs
Authors
Marcel Wienöbst
Max Bannach
Maciej Liśkiewicz
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87626-5_20

Premium Partner