Skip to main content
Top

2017 | OriginalPaper | Chapter

13. Recent Advances in Green Sustainable Nanocellulosic Fiber: An Overview

Authors : Disha Mishra, Karuna Shanker, Puja Khare

Published in: Green Technologies and Environmental Sustainability

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The current scenario of economic and social aspects led to the development of smart and new biomaterials. Sustainable bio nano approaches are focusing on environmentally friendly biomaterials from renewable resources. The renewable bio nano materials are often produced directly from natural or recycled products. The natural products are biodegradable and mostly consist of cellulose, chitosan, starch, collagen, soy protein, and casein. The cellulose is a grade one biomaterial with appealing features including biocompatibility and biodegradability. These renewable materials play an important role in reducing global warming by preventing the release of carbon dioxide to the atmosphere. The cellulose microfibrils are made up of a linear chain of nanofibrils of amorphous and crystalline character. Natural cellulose represents the cellulose I type polymorph which is thermodynamically metastable. The isolation of nanocellulose from the cellulose involves several methods. Nanocellulose possesses unique propensities such as high surface area-to-volume ratio, young modulus, high tensile strength, and coefficient of thermal expansion. Nanocellulose is mainly of two types, nanofiber and nanocrystals. Nanocellulose could be altered in long fibers, suspension, and film through various processes and modifications.
The extraction of nanocellulose involves multistage processing with vigorous chemical and mechanical treatment. Chemical methods involve alkali pretreatment combined with acid hydrolysis, ultrasonication, enzymatic hydrolysis, high pressure homogenization, cryocrusing, TEMPO-mediated oxidation, and so on. The choice of selected method strongly influences the aspect ratio, surface features, and mechanical stiffness. Recently most cellulosic material has been involved in fabrication into a biopolymer composite system but cellulose’s intrinsic hydrophilic character of the original surface features hampers the interfacial interaction with other hydrophobic polymeric structures. Therefore the modification of the surface introduces new functionalities into the cellulosic chain to convert it into active nanocellulose. The surface can be modified via two approaches: (i) physical interaction between cellulose and other macromolecules through adsorption on the surface, and (ii) alteration in the chemical bonding between cellulose and other chemical agents. A high surface area and the presence of an hydroxyl group provide a classic condition for surface mediation. TEMPO-mediated oxidation, amination, silylation, acetylation, oxidation, esterification, surfactant, or polymer grafting are the methods most often applied for surface modification of nanocellulose.
Apart from this current physical treatment, surface fibrillation, electric discharge (corona, cold plasma), irradiation, ultrasonic, electric currents, and the like have been applied to create a modified surface. Thus the use of modified reinforced biopolymer fibers instead of traditional fibers provides several advantages in different sectors including pharmaceuticals, paper, biomedicine, and the development of other novel smart materials. The presence of exceptional mechanical properties, surface groups, and biological properties makes it a suitable material for tissue scaffolds, drug delivery agents, and enzyme and protein immobilizing material. In addition to this, in the development of aerogel, biofoam, nanofiber, and additives for new devices or material, nanocellulose plays an important role. The application of nanocellulose in different sectors needs the proper assessment of biodegradability, toxicological profiling, and biocompatibility. Development of a new research platform for the creation of various supramolecular structures and engineered biobased material by the utilization of nanocellulose is the need of the hour. The economic and scientific points of view suggest that nanocellulose is a promising reinforcing green sustainable biomaterial that might be helpful in creating revolutionary changes in current technology and helping in advancement in various sectors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abidin Z, Mohd NA, Aziz FA, Radiman S, Ismail A, Yunus WMZW, Nor NM, Sohaimi RM, Sulaiman AZ, Halim NA (2016) Isolation of microfibrillated cellulose (MFC) from local hardwood waste, Resak (Vatica spp.). In: Materials Science Forum. Trans Tech Publ, pp 679–682 Abidin Z, Mohd NA, Aziz FA, Radiman S, Ismail A, Yunus WMZW, Nor NM, Sohaimi RM, Sulaiman AZ, Halim NA (2016) Isolation of microfibrillated cellulose (MFC) from local hardwood waste, Resak (Vatica spp.). In: Materials Science Forum. Trans Tech Publ, pp 679–682
go back to reference Adel AM, El-Gendy AA, Diab MA, Abou-Zeid RE, El-Zawawy WK, Dufresne A (2016) Microfibrillated cellulose from agricultural residues. Part I: Papermaking application. Ind Crop Prod Adel AM, El-Gendy AA, Diab MA, Abou-Zeid RE, El-Zawawy WK, Dufresne A (2016) Microfibrillated cellulose from agricultural residues. Part I: Papermaking application. Ind Crop Prod
go back to reference Alila S, Besbes I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crop Prod 41:250–259CrossRef Alila S, Besbes I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crop Prod 41:250–259CrossRef
go back to reference Anwar B, Rosyid NH, Effendi DB, Nandiyanto ABD, Mudzakir A, Hidayat T (2016) Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method. In: Proceedings of International Seminar on Mathematics, Science, and Computer Science Education (MSCEIS 2015). AIP Publishing, p 040001 Anwar B, Rosyid NH, Effendi DB, Nandiyanto ABD, Mudzakir A, Hidayat T (2016) Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method. In: Proceedings of International Seminar on Mathematics, Science, and Computer Science Education (MSCEIS 2015). AIP Publishing, p 040001
go back to reference Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRef Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRef
go back to reference Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83CrossRef Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83CrossRef
go back to reference Chen P, Yu H, Liu Y, Chen W, Wang X, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellul 20(1):149–157CrossRef Chen P, Yu H, Liu Y, Chen W, Wang X, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellul 20(1):149–157CrossRef
go back to reference Chen Y, Wu Q, Huang B, Huang M, Ai X (2014) Isolation and characteristics of cellulose and nanocellulose from Lotus Leaf Stalk Agro-wastes. BioResources 10(1):684–696 Chen Y, Wu Q, Huang B, Huang M, Ai X (2014) Isolation and characteristics of cellulose and nanocellulose from Lotus Leaf Stalk Agro-wastes. BioResources 10(1):684–696
go back to reference Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37(1-2):20–28 Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37(1-2):20–28
go back to reference Ciolacu D, Rudaz C, Vasilescu M, Budtova T (2016) Physically and chemically cross-linked cellulose cryogels: structure, properties and application for controlled release. Carbohydrate Polymers Ciolacu D, Rudaz C, Vasilescu M, Budtova T (2016) Physically and chemically cross-linked cellulose cryogels: structure, properties and application for controlled release. Carbohydrate Polymers
go back to reference Cozzolino CA, Nilsson F, Iotti M, Sacchi B, Piga A, Farris S (2013) Exploiting the nano-sized features of microfibrillated cellulose (MFC) for the development of controlled-release packaging. Colloids Surf B Biointerfaces 110:208–216CrossRef Cozzolino CA, Nilsson F, Iotti M, Sacchi B, Piga A, Farris S (2013) Exploiting the nano-sized features of microfibrillated cellulose (MFC) for the development of controlled-release packaging. Colloids Surf B Biointerfaces 110:208–216CrossRef
go back to reference Cranston ED, Gray DG (2006) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules 7(9):2522–2530CrossRef Cranston ED, Gray DG (2006) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules 7(9):2522–2530CrossRef
go back to reference Cui S, Zhang S, Ge S, Xiong L, Sun Q (2016) Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crop Prod 83:346–352CrossRef Cui S, Zhang S, Ge S, Xiong L, Sun Q (2016) Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crop Prod 83:346–352CrossRef
go back to reference Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41(24):9755–9759CrossRef Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41(24):9755–9759CrossRef
go back to reference Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227CrossRef Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227CrossRef
go back to reference Eichhorn S, Davies G (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellul 13(3):291–307CrossRef Eichhorn S, Davies G (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellul 13(3):291–307CrossRef
go back to reference Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Review: Current international research into cellulosic fibres and composites. J Mater Sci 36(9):2107–2131. doi:10.1023/a:1017512029696 CrossRef Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Review: Current international research into cellulosic fibres and composites. J Mater Sci 36(9):2107–2131. doi:10.​1023/​a:​1017512029696 CrossRef
go back to reference Eichhorn SJ, Young RJ, Davies GR (2005) Modeling crystal and molecular deformation in regenerated cellulose fibers. Biomacromolecules 6(1):507–513CrossRef Eichhorn SJ, Young RJ, Davies GR (2005) Modeling crystal and molecular deformation in regenerated cellulose fibers. Biomacromolecules 6(1):507–513CrossRef
go back to reference Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646CrossRef Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646CrossRef
go back to reference Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542CrossRef Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542CrossRef
go back to reference Hassan ML, Bras J, Hassan EA, Silard C, Mauret E (2014) Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Ind Crop Prod 55:102–108CrossRef Hassan ML, Bras J, Hassan EA, Silard C, Mauret E (2014) Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Ind Crop Prod 55:102–108CrossRef
go back to reference Hassan ML, Bras J, Mauret E, Fadel SM, Hassan EA, El-Wakil NA (2015) Palm rachis microfibrillated cellulose and oxidized-microfibrillated cellulose for improving paper sheets properties of unbeaten softwood and bagasse pulps. Ind Crop Prod 64:9–15CrossRef Hassan ML, Bras J, Mauret E, Fadel SM, Hassan EA, El-Wakil NA (2015) Palm rachis microfibrillated cellulose and oxidized-microfibrillated cellulose for improving paper sheets properties of unbeaten softwood and bagasse pulps. Ind Crop Prod 64:9–15CrossRef
go back to reference Henrique MA, Silvério HA, Neto WPF, Pasquini D (2013) Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J Environ Manage 121:202–209CrossRef Henrique MA, Silvério HA, Neto WPF, Pasquini D (2013) Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J Environ Manage 121:202–209CrossRef
go back to reference Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16(21):8210–8212CrossRef Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16(21):8210–8212CrossRef
go back to reference Huang L, Chen X, Nguyen TX, Tang H, Zhang L, Yang G (2013) Nano-cellulose 3D-networks as controlled-release drug carriers. J Mater Chem B 1(23):2976–2984CrossRef Huang L, Chen X, Nguyen TX, Tang H, Zhang L, Yang G (2013) Nano-cellulose 3D-networks as controlled-release drug carriers. J Mater Chem B 1(23):2976–2984CrossRef
go back to reference Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15(7):11922–11940. doi:10.3390/ijms150711922 CrossRef Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15(7):11922–11940. doi:10.​3390/​ijms150711922 CrossRef
go back to reference Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRef Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRef
go back to reference Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576CrossRef Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576CrossRef
go back to reference Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomedicine 6:321 Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomedicine 6:321
go back to reference Jiang F, Hsieh Y-L (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68CrossRef Jiang F, Hsieh Y-L (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68CrossRef
go back to reference Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellul 22(2):935–969CrossRef Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellul 22(2):935–969CrossRef
go back to reference Kalashnikova I, Bizot H, Bertoncini P, Cathala B, Apron I (2013) Cellulosic nanorods of various aspect for oil in water Pickering emulsions. Soft Matter 9:952–959 Kalashnikova I, Bizot H, Bertoncini P, Cathala B, Apron I (2013) Cellulosic nanorods of various aspect for oil in water Pickering emulsions. Soft Matter 9:952–959
go back to reference Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr Polym 137:608–616CrossRef Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr Polym 137:608–616CrossRef
go back to reference Kim J, Zhai L, Mun S, Ko H-U, Yun Y-M (2015) Cellulose nanocrystals, nanofibers, and their composites as renewable smart materials. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, pp 94340G-94340G-94346 Kim J, Zhai L, Mun S, Ko H-U, Yun Y-M (2015) Cellulose nanocrystals, nanofibers, and their composites as renewable smart materials. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, pp 94340G-94340G-94346
go back to reference Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef
go back to reference Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. In: Klemm D (ed) Polysaccharides II. Springer, Berlin, pp 49–96. doi:10.1007/12_097 CrossRef Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. In: Klemm D (ed) Polysaccharides II. Springer, Berlin, pp 49–96. doi:10.​1007/​12_​097 CrossRef
go back to reference Kolakovic R, Laaksonen T, Peltonen L, Laukkanen A, Hirvonen J (2012a) Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int J Pharm 430(1–2):47–55CrossRef Kolakovic R, Laaksonen T, Peltonen L, Laukkanen A, Hirvonen J (2012a) Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int J Pharm 430(1–2):47–55CrossRef
go back to reference Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T (2012b) Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm 82(2):308–315CrossRef Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T (2012b) Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm 82(2):308–315CrossRef
go back to reference Lee K-Y, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Comp Sci Technol 105:15–27CrossRef Lee K-Y, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Comp Sci Technol 105:15–27CrossRef
go back to reference Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90(4):1609–1613CrossRef Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90(4):1609–1613CrossRef
go back to reference Lin N, Dufresne A (2013) Supramolecular hydrogels from in situ host–guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Biomacromolecules 14(3):871–880CrossRef Lin N, Dufresne A (2013) Supramolecular hydrogels from in situ host–guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Biomacromolecules 14(3):871–880CrossRef
go back to reference Lin N, Dufresne A (2014) Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J 59:302–325CrossRef Lin N, Dufresne A (2014) Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J 59:302–325CrossRef
go back to reference Mahmoud KA, Mena JA, Male KB, Hrapovic S, Kamen A, Luong JH (2010) Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl Mater Interfaces 2(10):2924–2932CrossRef Mahmoud KA, Mena JA, Male KB, Hrapovic S, Kamen A, Luong JH (2010) Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl Mater Interfaces 2(10):2924–2932CrossRef
go back to reference Mariño M, Lopes da Silva L, Durán N, Tasic L (2015) Enhanced materials from nature: nanocellulose from citrus waste. Molecules 20(4):5908–5923CrossRef Mariño M, Lopes da Silva L, Durán N, Tasic L (2015) Enhanced materials from nature: nanocellulose from citrus waste. Molecules 20(4):5908–5923CrossRef
go back to reference Mishra D, Yadav V, Khare P, Das MR, Meena A, Shanker K (2016) Development of crystalline cellulosic fibres for sustained release of drug. Curr Top Med Chem 16(18):2026–2035CrossRef Mishra D, Yadav V, Khare P, Das MR, Meena A, Shanker K (2016) Development of crystalline cellulosic fibres for sustained release of drug. Curr Top Med Chem 16(18):2026–2035CrossRef
go back to reference Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766CrossRef Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766CrossRef
go back to reference Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102(2):579–592CrossRef Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102(2):579–592CrossRef
go back to reference Neto WPF, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue–Soy hulls. Ind Crop Prod 42:480–488CrossRef Neto WPF, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue–Soy hulls. Ind Crop Prod 42:480–488CrossRef
go back to reference Oun AA, Rhim J-W (2016) Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: Effect of isolation method. Mater Lett 168:146–150CrossRef Oun AA, Rhim J-W (2016) Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: Effect of isolation method. Mater Lett 168:146–150CrossRef
go back to reference Padalkar S, Capadona JR, Rowan SJ, Weder C, Won Y-H, Stanciu LA, Moon RJ (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26(11):8497–8502CrossRef Padalkar S, Capadona JR, Rowan SJ, Weder C, Won Y-H, Stanciu LA, Moon RJ (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26(11):8497–8502CrossRef
go back to reference Paschoal GB, Muller CM, Carvalho GM, Tischer CA, Mali S (2015) Isolation and characterization of nanofibrillated cellulose from oat hulls. Química Nova 38(4):478–482 Paschoal GB, Muller CM, Carvalho GM, Tischer CA, Mali S (2015) Isolation and characterization of nanofibrillated cellulose from oat hulls. Química Nova 38(4):478–482
go back to reference Pereira ALS, do Nascimento DM, JPS M, Vasconcelos NF, Feitosa JP, AIS B, Rosa Md F (2014) Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydr Polym 112:165–172CrossRef Pereira ALS, do Nascimento DM, JPS M, Vasconcelos NF, Feitosa JP, AIS B, Rosa Md F (2014) Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydr Polym 112:165–172CrossRef
go back to reference Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomed Nanotechnol 4(2):165 Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomed Nanotechnol 4(2):165
go back to reference Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources 8(2):1893–1908CrossRef Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources 8(2):1893–1908CrossRef
go back to reference Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93(3):033111CrossRef Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93(3):033111CrossRef
go back to reference Shanmugarajah B, Kiew PL, Chew IML, Choong TSY, Tan KW (2015) Isolation of nanocrystalline cellulose (NCC) from palm oil empty fruit bunch (EFB): preliminary result on FTIR and DLS analysis. Chem Eng 45:04002 Shanmugarajah B, Kiew PL, Chew IML, Choong TSY, Tan KW (2015) Isolation of nanocrystalline cellulose (NCC) from palm oil empty fruit bunch (EFB): preliminary result on FTIR and DLS analysis. Chem Eng 45:04002
go back to reference Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Compos Part A Appl Sci Manuf 40(6):791–799CrossRef Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Compos Part A Appl Sci Manuf 40(6):791–799CrossRef
go back to reference Sukul M, Nguyen TBL, Min Y-K, Lee S-Y, Lee B-T (2015) Effect of local sustainable release of BMP2-VEGF from nano-cellulose loaded in sponge biphasic calcium phosphate on bone regeneration. Tissue Eng Part A 21(11-12):1822–1836CrossRef Sukul M, Nguyen TBL, Min Y-K, Lee S-Y, Lee B-T (2015) Effect of local sustainable release of BMP2-VEGF from nano-cellulose loaded in sponge biphasic calcium phosphate on bone regeneration. Tissue Eng Part A 21(11-12):1822–1836CrossRef
go back to reference Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellul 21(1):335–346CrossRef Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellul 21(1):335–346CrossRef
go back to reference Thielemans W, Warbey CR, Walsh DA (2009) Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chem 11(4):531–537CrossRef Thielemans W, Warbey CR, Walsh DA (2009) Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chem 11(4):531–537CrossRef
go back to reference Villanova JCO, Ayres E, Carvalho SM, Patrício PS, Pereira FV, Oréfice RL (2011) Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery. Eur J Pharm Sci 42(4):406–415CrossRef Villanova JCO, Ayres E, Carvalho SM, Patrício PS, Pereira FV, Oréfice RL (2011) Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery. Eur J Pharm Sci 42(4):406–415CrossRef
go back to reference Wang H, Qian C, Roman M (2011) Effects of pH and salt concentration on the formation and properties of chitosan–cellulose nanocrystal polyelectrolyte–macroion complexes. Biomacromolecules 12(10):3708–3714CrossRef Wang H, Qian C, Roman M (2011) Effects of pH and salt concentration on the formation and properties of chitosan–cellulose nanocrystal polyelectrolyte–macroion complexes. Biomacromolecules 12(10):3708–3714CrossRef
go back to reference Wang Y, Chen L (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83(4):1937–1946CrossRef Wang Y, Chen L (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83(4):1937–1946CrossRef
go back to reference Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127(1):79–86. doi:10.1002/app.36943 CrossRef Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127(1):79–86. doi:10.​1002/​app.​36943 CrossRef
go back to reference Yu X, Yang Y, Xu H (eds) (2014) Lightweight materials from biopolymers and biofibers. ACS Symposium Series, vol 1175. American Chemical Society. doi:10.1021/bk-2014-1175 Yu X, Yang Y, Xu H (eds) (2014) Lightweight materials from biopolymers and biofibers. ACS Symposium Series, vol 1175. American Chemical Society. doi:10.​1021/​bk-2014-1175
go back to reference Zhang C, Liu R, Xiang J, Kang H, Liu Z, Huang Y (2014) Dissolution mechanism of cellulose in N,N-Dimethylacetamide/Lithium chloride: revisiting through molecular interactions. J Phys Chem B 118 (31):9507-9514. doi:10.1021/jp506013c Zhang C, Liu R, Xiang J, Kang H, Liu Z, Huang Y (2014) Dissolution mechanism of cellulose in N,N-Dimethylacetamide/Lithium chloride: revisiting through molecular interactions. J Phys Chem B 118 (31):9507-9514. doi:10.​1021/​jp506013c
Metadata
Title
Recent Advances in Green Sustainable Nanocellulosic Fiber: An Overview
Authors
Disha Mishra
Karuna Shanker
Puja Khare
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-50654-8_13