Skip to main content
Top
Published in: Rare Metals 11/2021

19-06-2021 | Review

Recent advances in tribological and wear properties of biomedical metallic materials

Authors: Hua-Fang Li, Jin-Yan Huang, Gui-Cai Lin, Peng-Yu Wang

Published in: Rare Metals | Issue 11/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biomedical metallic materials are commonly used in the repair and replacement of human tissues. After the materials are implanted in the human body, the implants can rub against human tissue or other implants, resulting in wear and tear of the implants. The wear and tear of implants in the human body can lead to osteolysis and inflammation, which can affect the longevity of the implant and human health. For the sake of human health and the longevity of implants, it is essential to study the frictional and wear properties of biomedical metallic materials. The present review summarizes the current research on the frictional and wear properties of biomedical metallic materials in recent years, as well as the methods and techniques to improve the frictional and wear properties of the materials. The significance of the present review lies in that it could provide momentus information for further investigation of the tribological properties of biomedical metallic materials.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Ehtemam-Haghighi S, Prashanth KG, Attar H, Chaubey AK, Cao GH, Zhang LC. Evaluation of mechanical and wear properties of Ti–xNb–7Fe alloys designed for biomedical applications. Mater Des. 2016;111:592.CrossRef Ehtemam-Haghighi S, Prashanth KG, Attar H, Chaubey AK, Cao GH, Zhang LC. Evaluation of mechanical and wear properties of Ti–xNb–7Fe alloys designed for biomedical applications. Mater Des. 2016;111:592.CrossRef
[2]
go back to reference Wu XY, Wang T, Zhou M, Huang WJ, Huang WX. Phytic acid/hydroxide hydroxide surface modification on biomineralization properties of 3D printed porous titanium. Chin J Rare Met. 2020;44(7):680. Wu XY, Wang T, Zhou M, Huang WJ, Huang WX. Phytic acid/hydroxide hydroxide surface modification on biomineralization properties of 3D printed porous titanium. Chin J Rare Met. 2020;44(7):680.
[3]
go back to reference Zhang E, Liu C. A new antibacterial Co–Cr–Mo–Cu alloy: preparation, biocorrosion, mechanical and antibacterial property. Mater Sci Eng C. 2016;69:134.CrossRef Zhang E, Liu C. A new antibacterial Co–Cr–Mo–Cu alloy: preparation, biocorrosion, mechanical and antibacterial property. Mater Sci Eng C. 2016;69:134.CrossRef
[4]
go back to reference E SF, Shi L, Guo ZG, Liu WM. The recent progress of tribological biomaterials. Biosurf Biotribol. 2015;1(2):81.CrossRef E SF, Shi L, Guo ZG, Liu WM. The recent progress of tribological biomaterials. Biosurf Biotribol. 2015;1(2):81.CrossRef
[5]
go back to reference Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2020;33(3):477.CrossRef Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2020;33(3):477.CrossRef
[6]
go back to reference Sahoo P, Das SK, Davim JP. 1-Tribology of Materials for Biomedical Applications. In: Davim JP, editor. Mechanical Behaviour of Biomaterials. Cambridge: Woodhead Publishing; 2019. 1. Sahoo P, Das SK, Davim JP. 1-Tribology of Materials for Biomedical Applications. In: Davim JP, editor. Mechanical Behaviour of Biomaterials. Cambridge: Woodhead Publishing; 2019. 1.
[7]
go back to reference Holmes D, Sharifi S, Stack MM. Tribo-corrosion of steel in artificial saliva. Tribol Int. 2014;75:80.CrossRef Holmes D, Sharifi S, Stack MM. Tribo-corrosion of steel in artificial saliva. Tribol Int. 2014;75:80.CrossRef
[8]
go back to reference Muley SV, Vidvans AN, Chaudhari GP, Udainiya S. An assessment of ultra fine grained 316L stainless steel for implant applications. Acta Biomater. 2016;30:408.CrossRef Muley SV, Vidvans AN, Chaudhari GP, Udainiya S. An assessment of ultra fine grained 316L stainless steel for implant applications. Acta Biomater. 2016;30:408.CrossRef
[9]
go back to reference Shen G, Fang F, Kang C. Tribological performance of bioimplants: a comprehensive review. Nanotechnol Precis Eng. 2018;1(2):107. Shen G, Fang F, Kang C. Tribological performance of bioimplants: a comprehensive review. Nanotechnol Precis Eng. 2018;1(2):107.
[10]
go back to reference Fellah M, Labaïz M, Assala O, Iost A, Dekhil L. Tribological behaviour of AISI 316L stainless steel for biomedical applications. Tribol Mater Surf Interfaces. 2013;7(3):135.CrossRef Fellah M, Labaïz M, Assala O, Iost A, Dekhil L. Tribological behaviour of AISI 316L stainless steel for biomedical applications. Tribol Mater Surf Interfaces. 2013;7(3):135.CrossRef
[11]
go back to reference Chen YJ, Xu ZG, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10(11):4561.CrossRef Chen YJ, Xu ZG, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10(11):4561.CrossRef
[12]
go back to reference Chen JX, Gao M, Tan LL, Yang K. Microstructure, mechanical and biodegradable properties of a Mg–2Zn–1Gd–0.5Zr alloy with different solution treatments. Rare Met. 2019;38(6):532.CrossRef Chen JX, Gao M, Tan LL, Yang K. Microstructure, mechanical and biodegradable properties of a Mg–2Zn–1Gd–0.5Zr alloy with different solution treatments. Rare Met. 2019;38(6):532.CrossRef
[13]
go back to reference Zhu DH, Cockerill I, Su YC, Zhang ZX, Fu JY, Lee KW, Ma J, Okpokwasili C, Tang LP, Zheng YF, Qin YX, Wang YD. Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials. Acs Appl Mater Interfaces. 2019;11(7):6809.CrossRef Zhu DH, Cockerill I, Su YC, Zhang ZX, Fu JY, Lee KW, Ma J, Okpokwasili C, Tang LP, Zheng YF, Qin YX, Wang YD. Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials. Acs Appl Mater Interfaces. 2019;11(7):6809.CrossRef
[14]
go back to reference Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R Rep. 2014;77:1.CrossRef Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R Rep. 2014;77:1.CrossRef
[15]
go back to reference Cheng J, Huang T, Zheng YF. Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe–Fe2O3 composites. J Biomed Mater Res A. 2014;102(7):2277.CrossRef Cheng J, Huang T, Zheng YF. Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe–Fe2O3 composites. J Biomed Mater Res A. 2014;102(7):2277.CrossRef
[16]
go back to reference Wood RJK. Tribo-corrosion of coatings: a review. J Phys D. 2007;40(18):5502.CrossRef Wood RJK. Tribo-corrosion of coatings: a review. J Phys D. 2007;40(18):5502.CrossRef
[17]
go back to reference Mathew MT, Srinivasa Pai P, Pourzal R, Fischer A, Wimmer MA. Significance of tribocorrosion in biomedical applications: overview and current status. Adv Tribol. 2009;2009:25. Mathew MT, Srinivasa Pai P, Pourzal R, Fischer A, Wimmer MA. Significance of tribocorrosion in biomedical applications: overview and current status. Adv Tribol. 2009;2009:25.
[18]
go back to reference Mischler S, Muñoz AI. Wear of CoCrMo alloys used in metal-on-metal hip joints: a tribocorrosion appraisal. Wear. 2013;297(1):1081.CrossRef Mischler S, Muñoz AI. Wear of CoCrMo alloys used in metal-on-metal hip joints: a tribocorrosion appraisal. Wear. 2013;297(1):1081.CrossRef
[19]
go back to reference Alves SA, Beline T, Barão VAR, Sukotjo C, Mathew MT, Rocha LA, Celis JP, Souza JCM. Chapter 3-Degradation of titanium-based implants. In: Souza JCM, Hotza D, Henriques B, Boccaccini AR, editors. Nanostructured Biomaterials for Cranio-Maxillofacial and Oral Applications. Oxford: Elsevier; 2018. 41.CrossRef Alves SA, Beline T, Barão VAR, Sukotjo C, Mathew MT, Rocha LA, Celis JP, Souza JCM. Chapter 3-Degradation of titanium-based implants. In: Souza JCM, Hotza D, Henriques B, Boccaccini AR, editors. Nanostructured Biomaterials for Cranio-Maxillofacial and Oral Applications. Oxford: Elsevier; 2018. 41.CrossRef
[20]
go back to reference Lu X, Zhang D, Xu W, Yu A, Zhang J, Tamaddon M, Zhang J, Qu X, Liu C, Su B. The effect of Cu content on corrosion, wear and tribocorrosion resistance of Ti-Mo-Cu alloy for load-bearing bone implants. Corros Sci. 2020;177:109007.CrossRef Lu X, Zhang D, Xu W, Yu A, Zhang J, Tamaddon M, Zhang J, Qu X, Liu C, Su B. The effect of Cu content on corrosion, wear and tribocorrosion resistance of Ti-Mo-Cu alloy for load-bearing bone implants. Corros Sci. 2020;177:109007.CrossRef
[21]
go back to reference Daley B, Doherty AT, Fairman B, Case CP. Wear debris from hip or knee replacements causes chromosomal damage in human cells in tissue culture. J Bone Joint Surg Br. 2004;86(4):598.CrossRef Daley B, Doherty AT, Fairman B, Case CP. Wear debris from hip or knee replacements causes chromosomal damage in human cells in tissue culture. J Bone Joint Surg Br. 2004;86(4):598.CrossRef
[22]
go back to reference Seghizzi P, D’Adda F, Borleri D, Barbic F, Mosconi G. Cobalt myocardiopathy. A critical review of literature. Sci Total Environ. 1994;150(1–3):105.CrossRef Seghizzi P, D’Adda F, Borleri D, Barbic F, Mosconi G. Cobalt myocardiopathy. A critical review of literature. Sci Total Environ. 1994;150(1–3):105.CrossRef
[23]
go back to reference Bandyopadhyay A, Shivaram A, Isik M, Avila JD, Dernell WS, Bose S. Additively manufactured calcium phosphate reinforced CoCrMo alloy: bio-tribological and biocompatibility evaluation for load-bearing implants. Addit Manuf. 2019;28:312. Bandyopadhyay A, Shivaram A, Isik M, Avila JD, Dernell WS, Bose S. Additively manufactured calcium phosphate reinforced CoCrMo alloy: bio-tribological and biocompatibility evaluation for load-bearing implants. Addit Manuf. 2019;28:312.
[24]
[25]
go back to reference Lippmann M, Ito K, Hwang JS, Maciejczyk P, Chen LC. Cardiovascular effects of nickel in ambient air. Environ Health Perspect. 2006;114(11):1662.CrossRef Lippmann M, Ito K, Hwang JS, Maciejczyk P, Chen LC. Cardiovascular effects of nickel in ambient air. Environ Health Perspect. 2006;114(11):1662.CrossRef
[26]
go back to reference Tkachenko S, Datskevich O, Kulak L, Jacobson S, Engqvist H, Persson C. Wear and friction properties of experimental Ti–Si–Zr alloys for biomedical applications. J Mech Behav Biomed Mater. 2014;39:61.CrossRef Tkachenko S, Datskevich O, Kulak L, Jacobson S, Engqvist H, Persson C. Wear and friction properties of experimental Ti–Si–Zr alloys for biomedical applications. J Mech Behav Biomed Mater. 2014;39:61.CrossRef
[27]
go back to reference Goldring SR, Schiller AL, Roelke M, Rourke CM, O’Neil DA, Harris WH. The synovial-like membrane at the bone-cement interface in loose total hip replacements and its proposed role in bone lysis. J Bone Joint Surg Am. 1983;65(5):575.CrossRef Goldring SR, Schiller AL, Roelke M, Rourke CM, O’Neil DA, Harris WH. The synovial-like membrane at the bone-cement interface in loose total hip replacements and its proposed role in bone lysis. J Bone Joint Surg Am. 1983;65(5):575.CrossRef
[28]
go back to reference Holt G, Murnaghan C, Reilly J, Meek D. The biology of aseptic osteolysis. Clin Orthop Relat Res. 2007;460:240.CrossRef Holt G, Murnaghan C, Reilly J, Meek D. The biology of aseptic osteolysis. Clin Orthop Relat Res. 2007;460:240.CrossRef
[29]
go back to reference Masui T, Sakano S, Hasegawa Y, Warashina H, Ishiguro N. Expression of inflammatory cytokines, RANKL and OPG induced by titanium, cobalt-chromium and polyethylene particles. Biomaterials. 2005;26(14):1695.CrossRef Masui T, Sakano S, Hasegawa Y, Warashina H, Ishiguro N. Expression of inflammatory cytokines, RANKL and OPG induced by titanium, cobalt-chromium and polyethylene particles. Biomaterials. 2005;26(14):1695.CrossRef
[30]
go back to reference Jiang Y, Jia T, Gong W, Wooley P, Yang SY. Effects of Ti, PMMA, UHMWPE, and Co–Cr wear particles on differentiation and functions of bone marrow stromal cells. J Biomed Mater Res A. 2013;101:2817.CrossRef Jiang Y, Jia T, Gong W, Wooley P, Yang SY. Effects of Ti, PMMA, UHMWPE, and Co–Cr wear particles on differentiation and functions of bone marrow stromal cells. J Biomed Mater Res A. 2013;101:2817.CrossRef
[31]
go back to reference Haynes DR, Rogers SD, Hay S, Pearcy MJ, Howie DW. The differences in toxicity and release of bone-resorbing mediators induced by titanium and cobalt-chromium-alloy wear particles. J Bone Joint Surg Am. 1993;75(6):825.CrossRef Haynes DR, Rogers SD, Hay S, Pearcy MJ, Howie DW. The differences in toxicity and release of bone-resorbing mediators induced by titanium and cobalt-chromium-alloy wear particles. J Bone Joint Surg Am. 1993;75(6):825.CrossRef
[32]
go back to reference Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Prog Mater Sci. 2009;54(3):397.CrossRef Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Prog Mater Sci. 2009;54(3):397.CrossRef
[33]
go back to reference Papagelopoulos PJ, Mavrogenis AF, Karamitros AE, Zahos KA, Nomikos G, Soucacos PN. Distal leg wear debris mass from a rotating hinged knee prosthesis. J Arthroplasty. 2007;22(6):909.CrossRef Papagelopoulos PJ, Mavrogenis AF, Karamitros AE, Zahos KA, Nomikos G, Soucacos PN. Distal leg wear debris mass from a rotating hinged knee prosthesis. J Arthroplasty. 2007;22(6):909.CrossRef
[34]
go back to reference Tan GM, Lynne G, Sarbjit S. Osteolysis and wear debris after total knee arthroplasty presenting with extra-articular metallosis in the calf. J Arthroplasty. 2008;23(5):775.CrossRef Tan GM, Lynne G, Sarbjit S. Osteolysis and wear debris after total knee arthroplasty presenting with extra-articular metallosis in the calf. J Arthroplasty. 2008;23(5):775.CrossRef
[35]
go back to reference Attar H, Prashanth KG, Chaubey AK, Calin M, Zhang LC, Scudino S, Eckert J. Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater Lett. 2015;142:38.CrossRef Attar H, Prashanth KG, Chaubey AK, Calin M, Zhang LC, Scudino S, Eckert J. Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater Lett. 2015;142:38.CrossRef
[36]
go back to reference Ueda K, Narushima T, Ouchi C, Iguchi Y. Wear loss and elution of C.P.Ti and titanium alloys in simulated body fluids. Mater Sci Forum. 2005;510:2333.CrossRef Ueda K, Narushima T, Ouchi C, Iguchi Y. Wear loss and elution of C.P.Ti and titanium alloys in simulated body fluids. Mater Sci Forum. 2005;510:2333.CrossRef
[37]
go back to reference Fellah M, Assala O, Labaïz M, Dekhil L, Iost A. Friction and wear behavior of Ti-6Al-7Nb biomaterial alloy. J Biomater Nanobiotechnology. 2013;4(4):374.CrossRef Fellah M, Assala O, Labaïz M, Dekhil L, Iost A. Friction and wear behavior of Ti-6Al-7Nb biomaterial alloy. J Biomater Nanobiotechnology. 2013;4(4):374.CrossRef
[38]
go back to reference Luo Y, Chen WW, Tian MC, Teng SH. Thermal oxidation of Ti6Al4V alloy and its biotribological properties under serum lubrication. Tribol Int. 2015;89:67.CrossRef Luo Y, Chen WW, Tian MC, Teng SH. Thermal oxidation of Ti6Al4V alloy and its biotribological properties under serum lubrication. Tribol Int. 2015;89:67.CrossRef
[39]
go back to reference Kao WH, Su YL, Horng JH, Yang SE. Tribological performance, electrochemical behavior and biocompatibility of high-temperature gas-nitrided Ti6Al4V alloy. Ind Lubr Tribol. 2018;70(8):1536.CrossRef Kao WH, Su YL, Horng JH, Yang SE. Tribological performance, electrochemical behavior and biocompatibility of high-temperature gas-nitrided Ti6Al4V alloy. Ind Lubr Tribol. 2018;70(8):1536.CrossRef
[40]
go back to reference Runa MJ, Mathew MT, Fernandes MH, Rocha LA. First insight on the impact of an osteoblastic layer on the bio-tribocorrosion performance of Ti6Al4V hip implants. Acta Biomater. 2015;12:341.CrossRef Runa MJ, Mathew MT, Fernandes MH, Rocha LA. First insight on the impact of an osteoblastic layer on the bio-tribocorrosion performance of Ti6Al4V hip implants. Acta Biomater. 2015;12:341.CrossRef
[41]
go back to reference Miura-Fujiwara E, Okumura T, Yamasaki T. Frictional and wear behavior of commercially pure Ti, Ti–6Al–7Nb, and SUS3161, stainless steel in artificial saliva at 310 K. Mater Trans. 2015;56(10):1648.CrossRef Miura-Fujiwara E, Okumura T, Yamasaki T. Frictional and wear behavior of commercially pure Ti, Ti–6Al–7Nb, and SUS3161, stainless steel in artificial saliva at 310 K. Mater Trans. 2015;56(10):1648.CrossRef
[42]
go back to reference Suresh KS, Geetha M, Richard C, Landoulsi J, Ramasawmy H, Suwas S, Asokamani R. Effect of equal channel angular extrusion on wear and corrosion behavior of the orthopedic Ti–13Nb–13Zr alloy in simulated body fluid. Mat Sci Eng C-Mater. 2012;32(4):763.CrossRef Suresh KS, Geetha M, Richard C, Landoulsi J, Ramasawmy H, Suwas S, Asokamani R. Effect of equal channel angular extrusion on wear and corrosion behavior of the orthopedic Ti–13Nb–13Zr alloy in simulated body fluid. Mat Sci Eng C-Mater. 2012;32(4):763.CrossRef
[43]
go back to reference Hee AC, Martin PJ, Bendavid A, Jamali SS, Zhao Y. Tribo-corrosion performance of filtered-arc-deposited tantalum coatings on Ti–13Nb–13Zr alloy for bio-implants applications. Wear. 2018;400:31.CrossRef Hee AC, Martin PJ, Bendavid A, Jamali SS, Zhao Y. Tribo-corrosion performance of filtered-arc-deposited tantalum coatings on Ti–13Nb–13Zr alloy for bio-implants applications. Wear. 2018;400:31.CrossRef
[44]
go back to reference Wang ZG, Huang WJ, Ma YL. Micro-scale abrasive wear behavior of medical implant material Ti–25Nb–3Mo–3Zr–2Sn alloy on various friction pairs. Mat Sci Eng C-Mater. 2014;42:211.CrossRef Wang ZG, Huang WJ, Ma YL. Micro-scale abrasive wear behavior of medical implant material Ti–25Nb–3Mo–3Zr–2Sn alloy on various friction pairs. Mat Sci Eng C-Mater. 2014;42:211.CrossRef
[45]
go back to reference Wang ZG, Li Y, Huang WJ, Chen XL, He HR. Micro-abrasion-corrosion behaviour of a biomedical Ti–25Nb–3Mo–3Zr–2Sn alloy in simulated physiological fluid. J Mech Behav Biomed Mater. 2016;63:361.CrossRef Wang ZG, Li Y, Huang WJ, Chen XL, He HR. Micro-abrasion-corrosion behaviour of a biomedical Ti–25Nb–3Mo–3Zr–2Sn alloy in simulated physiological fluid. J Mech Behav Biomed Mater. 2016;63:361.CrossRef
[46]
go back to reference Wang ZG, Huang WJ, Li Y, He HR, Zhou YT, Zheng ZQ. Tribocorrosion behaviour of a biomedical Ti–25Nb–3Mo–3Zr–2Sn alloy in Ringer’s solution. Mat Sci Eng C-Mater. 2017;76:1094.CrossRef Wang ZG, Huang WJ, Li Y, He HR, Zhou YT, Zheng ZQ. Tribocorrosion behaviour of a biomedical Ti–25Nb–3Mo–3Zr–2Sn alloy in Ringer’s solution. Mat Sci Eng C-Mater. 2017;76:1094.CrossRef
[47]
go back to reference Xu W, Chen M, Lu X, Zhang DW, Singh HP, Jian-shu Y, Pan Y, Qu XH, Liu CZ. Effects of Mo content on corrosion and tribocorrosion behaviours of Ti–Mo orthopaedic alloys fabricated by powder metallurgy. Corros Sci. 2020;168:108557.CrossRef Xu W, Chen M, Lu X, Zhang DW, Singh HP, Jian-shu Y, Pan Y, Qu XH, Liu CZ. Effects of Mo content on corrosion and tribocorrosion behaviours of Ti–Mo orthopaedic alloys fabricated by powder metallurgy. Corros Sci. 2020;168:108557.CrossRef
[48]
go back to reference Xu W, Yu A, Lu X, Tamaddon M, Ng L, Hayat Md, Wang M, Zhang J, Qu X, Liu C. Synergistic interactions between wear and corrosion of Ti–16Mo orthopedic alloy. J Mater Res Technol. 2020;9(5):9996.CrossRef Xu W, Yu A, Lu X, Tamaddon M, Ng L, Hayat Md, Wang M, Zhang J, Qu X, Liu C. Synergistic interactions between wear and corrosion of Ti–16Mo orthopedic alloy. J Mater Res Technol. 2020;9(5):9996.CrossRef
[49]
go back to reference Yang X, Hutchinson CR. Corrosion-wear of beta-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid. Acta Biomater. 2016;42:429.CrossRef Yang X, Hutchinson CR. Corrosion-wear of beta-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid. Acta Biomater. 2016;42:429.CrossRef
[50]
go back to reference Wang ZG, Zhou YT, Wang HN, Li Y, Huang WJ. Tribocorrosion behavior of Ti-30Zr alloy for dental implants. Mater Lett. 2018;218:190.CrossRef Wang ZG, Zhou YT, Wang HN, Li Y, Huang WJ. Tribocorrosion behavior of Ti-30Zr alloy for dental implants. Mater Lett. 2018;218:190.CrossRef
[51]
go back to reference Luo W, Kuai J. Friction and wear properties of artificial joints of CoCrMo alloy. IOP Conf Ser: Mater Sci Eng. 2018;439(4):042072.CrossRef Luo W, Kuai J. Friction and wear properties of artificial joints of CoCrMo alloy. IOP Conf Ser: Mater Sci Eng. 2018;439(4):042072.CrossRef
[52]
go back to reference Sinnett-Jones PE, Wharton JA, Wood RJK. Micro-abrasion-corrosion of a CoCrMo alloy in simulated artificial hip joint environments. Wear. 2005;259:898.CrossRef Sinnett-Jones PE, Wharton JA, Wood RJK. Micro-abrasion-corrosion of a CoCrMo alloy in simulated artificial hip joint environments. Wear. 2005;259:898.CrossRef
[53]
go back to reference Yoneyama C, Cao S, Igual Munoz A, Mischler S. Influence of bovine serum albumin (BSA) on the tribocorrosion behaviour of a low carbon CoCrMo alloy in simulated body fluids. Lubricants. 2020;8(5):61.CrossRef Yoneyama C, Cao S, Igual Munoz A, Mischler S. Influence of bovine serum albumin (BSA) on the tribocorrosion behaviour of a low carbon CoCrMo alloy in simulated body fluids. Lubricants. 2020;8(5):61.CrossRef
[54]
go back to reference Alvarez-Vera M, Ortega-Saenz JA, Hernandez-Rodriguez MAL. A study of the wear performance in a hip simulator of a metal-metal Co–Cr alloy with different boron additions. Wear. 2020;301(1–2):175. Alvarez-Vera M, Ortega-Saenz JA, Hernandez-Rodriguez MAL. A study of the wear performance in a hip simulator of a metal-metal Co–Cr alloy with different boron additions. Wear. 2020;301(1–2):175.
[55]
go back to reference Salahinejad E, Amini R, Marasi M, Hadianfard MJ. Microstructure and wear behavior of a porous nanocrystalline nickel-free austenitic stainless steel developed by powder metallurgy. Mater Des. 2010;31(4):2259.CrossRef Salahinejad E, Amini R, Marasi M, Hadianfard MJ. Microstructure and wear behavior of a porous nanocrystalline nickel-free austenitic stainless steel developed by powder metallurgy. Mater Des. 2010;31(4):2259.CrossRef
[56]
go back to reference Yan W. Theoretical investigation of wear-resistance mechanism of superelastic shape memory alloy NiTi. Mater Sci Eng A. 2006;427(1):348.CrossRef Yan W. Theoretical investigation of wear-resistance mechanism of superelastic shape memory alloy NiTi. Mater Sci Eng A. 2006;427(1):348.CrossRef
[57]
go back to reference Zhang C, Farhat ZN. Sliding wear of superelastic TiNi alloy. Wear. 2009;267(1):394.CrossRef Zhang C, Farhat ZN. Sliding wear of superelastic TiNi alloy. Wear. 2009;267(1):394.CrossRef
[58]
go back to reference Neupane R, Farhat Z. Wear and dent resistance of superelastic TiNi alloy. Wear. 2013;301(1–2):682.CrossRef Neupane R, Farhat Z. Wear and dent resistance of superelastic TiNi alloy. Wear. 2013;301(1–2):682.CrossRef
[59]
go back to reference Wu S, Liu X, Yeung KWK, Xu ZS, Chung CY, Chu PK. Wear properties of porous NiTi orthopedic shape memory alloy. J Mater Eng Perform. 2012;21(12):2622.CrossRef Wu S, Liu X, Yeung KWK, Xu ZS, Chung CY, Chu PK. Wear properties of porous NiTi orthopedic shape memory alloy. J Mater Eng Perform. 2012;21(12):2622.CrossRef
[60]
go back to reference Wu S, Liu X, Wu G, Yeung KWK, Zheng D, Chung CY, Xu ZS, Chu PK. Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold. J Biomed Mater Res A. 2013;101A(9):2586.CrossRef Wu S, Liu X, Wu G, Yeung KWK, Zheng D, Chung CY, Xu ZS, Chu PK. Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold. J Biomed Mater Res A. 2013;101A(9):2586.CrossRef
[61]
go back to reference Zhou JZ, Sun YJ, Huang S, Sheng J, Li J, Agyenim-Boateng E. Effect of laser peening on friction and wear behavior of medical Ti6Al4V alloy. Opt Laser Technol. 2019;109:263.CrossRef Zhou JZ, Sun YJ, Huang S, Sheng J, Li J, Agyenim-Boateng E. Effect of laser peening on friction and wear behavior of medical Ti6Al4V alloy. Opt Laser Technol. 2019;109:263.CrossRef
[62]
go back to reference Xu W, Hou CJ, Mao YX, Yang L, Tamaddon M, Zhang JL, Qu XH, Liu CZ, Su B, Lu X. Characteristics of novel Ti–10Mo–xCu alloy by powder metallurgy for potential biomedical implant applications. Bioact Mater. 2020;5(3):659.CrossRef Xu W, Hou CJ, Mao YX, Yang L, Tamaddon M, Zhang JL, Qu XH, Liu CZ, Su B, Lu X. Characteristics of novel Ti–10Mo–xCu alloy by powder metallurgy for potential biomedical implant applications. Bioact Mater. 2020;5(3):659.CrossRef
[63]
go back to reference Li Y, Cui Y, Zhang F, Xu H. Shape memory behavior in Ti–Zr alloys. Scr Mater. 2011;64(6):584.CrossRef Li Y, Cui Y, Zhang F, Xu H. Shape memory behavior in Ti–Zr alloys. Scr Mater. 2011;64(6):584.CrossRef
[64]
go back to reference Li DY. A new type of wear-resistant material: pseudo-elastic TiNi alloy. Wear. 1998;221(2):116.CrossRef Li DY. A new type of wear-resistant material: pseudo-elastic TiNi alloy. Wear. 1998;221(2):116.CrossRef
[65]
go back to reference Ilanaganar E, Anbuselvan S. Wear mechanisms of AZ31B magnesium alloy during dry sliding condition. Mater Today-Proc. 2018;5(1):628.CrossRef Ilanaganar E, Anbuselvan S. Wear mechanisms of AZ31B magnesium alloy during dry sliding condition. Mater Today-Proc. 2018;5(1):628.CrossRef
[66]
go back to reference Mert F. Wear behaviour of hot rolled AZ31B magnesium alloy as candidate for biodegradable implant material. T Nonferrous Met Soc China. 2017;27(12):2598.CrossRef Mert F. Wear behaviour of hot rolled AZ31B magnesium alloy as candidate for biodegradable implant material. T Nonferrous Met Soc China. 2017;27(12):2598.CrossRef
[67]
go back to reference Li H, Liu D, Zhao Y, Jin F, Chen M. The influence of Zn content on the corrosion and wear performance of Mg–Zn–Ca alloy in simulated body fluid. J Mater Eng Perform. 2016;25(9):3890.CrossRef Li H, Liu D, Zhao Y, Jin F, Chen M. The influence of Zn content on the corrosion and wear performance of Mg–Zn–Ca alloy in simulated body fluid. J Mater Eng Perform. 2016;25(9):3890.CrossRef
[68]
go back to reference Hua NB, Chen WZ, Wang QT, Guo QH, Huang YT, Zhang T. Tribocorrosion behaviors of a biodegradable Mg65Zn30Ca5 bulk metallic glass for potential biomedical implant applications. J Alloy Compd. 2018;745:111.CrossRef Hua NB, Chen WZ, Wang QT, Guo QH, Huang YT, Zhang T. Tribocorrosion behaviors of a biodegradable Mg65Zn30Ca5 bulk metallic glass for potential biomedical implant applications. J Alloy Compd. 2018;745:111.CrossRef
[69]
go back to reference Dai JW, Zhang XB, Yin Q, Ni SN, Ba ZX, Wang ZZ. Friction and wear behaviors of biodegradable Mg–6Gd–0.5Zn–0.4Zr alloy under simulated body fluid condition. J Magnes Alloy. 2017;5(4):448.CrossRef Dai JW, Zhang XB, Yin Q, Ni SN, Ba ZX, Wang ZZ. Friction and wear behaviors of biodegradable Mg–6Gd–0.5Zn–0.4Zr alloy under simulated body fluid condition. J Magnes Alloy. 2017;5(4):448.CrossRef
[70]
go back to reference Liu DB, Wu B, Wang X, Chen MF. Corrosion and wear behavior of an Mg–2Zn–0.2Mn alloy in simulated body fluid. Rare Met. 2015;34(08):553.CrossRef Liu DB, Wu B, Wang X, Chen MF. Corrosion and wear behavior of an Mg–2Zn–0.2Mn alloy in simulated body fluid. Rare Met. 2015;34(08):553.CrossRef
[71]
go back to reference Wang K, Tong X, Lin J, Wei A, Li Y, Dargusch M, Wen C. Binary Zn–Ti alloys for orthopedic applications: corrosion and degradation behaviors, friction and wear performance, and cytotoxicity. J Mater Sci Technol. 2020;74:216.CrossRef Wang K, Tong X, Lin J, Wei A, Li Y, Dargusch M, Wen C. Binary Zn–Ti alloys for orthopedic applications: corrosion and degradation behaviors, friction and wear performance, and cytotoxicity. J Mater Sci Technol. 2020;74:216.CrossRef
[72]
go back to reference Lin JX, Tong X, Shi ZM, Zhang DC, Zhang LS, Wang K, Wei AP, Jin LF, Lin JG, Li YC, Wen CE. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications. Acta Biomater. 2020;106:410.CrossRef Lin JX, Tong X, Shi ZM, Zhang DC, Zhang LS, Wang K, Wei AP, Jin LF, Lin JG, Li YC, Wen CE. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications. Acta Biomater. 2020;106:410.CrossRef
[73]
go back to reference Narayanan TSNS, Kim J, Park HW. High performance corrosion and wear resistant Ti–6Al–4V alloy by the hybrid treatment method. Appl Surf Sci. 2020;504:144388.CrossRef Narayanan TSNS, Kim J, Park HW. High performance corrosion and wear resistant Ti–6Al–4V alloy by the hybrid treatment method. Appl Surf Sci. 2020;504:144388.CrossRef
[74]
go back to reference Zhang JF, Gan XX, Tang HQ, Zhan YZ. Enhancement of wear and corrosion resistance of low modulus beta-type Zr–20Nb–xTi (x=0, 3) dental alloys through thermal oxidation treatment. Mat Sci Eng C-Mater. 2017;76:260.CrossRef Zhang JF, Gan XX, Tang HQ, Zhan YZ. Enhancement of wear and corrosion resistance of low modulus beta-type Zr–20Nb–xTi (x=0, 3) dental alloys through thermal oxidation treatment. Mat Sci Eng C-Mater. 2017;76:260.CrossRef
[75]
go back to reference Chamgordani SA, Miresmaeili R, Aliofkhazraei M. Improvement in tribological behavior of commercial pure titanium (CP–Ti) by surface mechanical attrition treatment (SMAT). Tribol Int. 2018;119:744.CrossRef Chamgordani SA, Miresmaeili R, Aliofkhazraei M. Improvement in tribological behavior of commercial pure titanium (CP–Ti) by surface mechanical attrition treatment (SMAT). Tribol Int. 2018;119:744.CrossRef
[76]
go back to reference Saravanan P, Raja VS, Mukherjee S. Effect of plasma immersion ion implantation of nitrogen on the wear and corrosion behavior of 316LVM stainless steel. Surf Coat Technol. 2007;201(19):8131.CrossRef Saravanan P, Raja VS, Mukherjee S. Effect of plasma immersion ion implantation of nitrogen on the wear and corrosion behavior of 316LVM stainless steel. Surf Coat Technol. 2007;201(19):8131.CrossRef
[77]
go back to reference Mohan L, Anandan C. Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti–13Nb–13Zr. Appl Surf Sci. 2013;282:281.CrossRef Mohan L, Anandan C. Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti–13Nb–13Zr. Appl Surf Sci. 2013;282:281.CrossRef
[78]
go back to reference Li QY, Zhang QQ, An MZ. Enhanced corrosion and wear resistance of AZ31 magnesium alloy in simulated body fluid via electrodeposition of nanocrystalline zinc. Materialia. 2018;4:282.CrossRef Li QY, Zhang QQ, An MZ. Enhanced corrosion and wear resistance of AZ31 magnesium alloy in simulated body fluid via electrodeposition of nanocrystalline zinc. Materialia. 2018;4:282.CrossRef
[79]
go back to reference Çomaklı O, Yazıcı M, Kovacı H, Yetim T, Yetim AF, Çelik A. Tribological and electrochemical properties of TiO2 films produced on Cp-Ti by sol-gel and SILAR in bio-simulated environment. Surf Coat Technol. 2018;352:513.CrossRef Çomaklı O, Yazıcı M, Kovacı H, Yetim T, Yetim AF, Çelik A. Tribological and electrochemical properties of TiO2 films produced on Cp-Ti by sol-gel and SILAR in bio-simulated environment. Surf Coat Technol. 2018;352:513.CrossRef
[80]
go back to reference Comakli O, Yatim F, Yazici M, Yetim T, Celik A. Tribological and electrochemical behavior of Ag2O/ZnO/NiO nanocomposite coating on commercial pure titanium for biomedical applications. Ind Lubr Tribol. 2019;71(10):1166.CrossRef Comakli O, Yatim F, Yazici M, Yetim T, Celik A. Tribological and electrochemical behavior of Ag2O/ZnO/NiO nanocomposite coating on commercial pure titanium for biomedical applications. Ind Lubr Tribol. 2019;71(10):1166.CrossRef
[81]
go back to reference Siddaiah A, Mao B, Kasar AK, Liao Y, Menezes PL. Influence of laser shock peening on the surface energy and tribocorrosion properties of an AZ31B Mg alloy. Wear. 2020;462–463:203490.CrossRef Siddaiah A, Mao B, Kasar AK, Liao Y, Menezes PL. Influence of laser shock peening on the surface energy and tribocorrosion properties of an AZ31B Mg alloy. Wear. 2020;462–463:203490.CrossRef
[82]
go back to reference Guo L, Qin L, Kong F, Yi H, Tang B. Improving tribological properties of Ti–5Zr–3Sn–5Mo–15Nb alloy by double glow plasma surface alloying. Appl Surf Sci. 2016;388:203.CrossRef Guo L, Qin L, Kong F, Yi H, Tang B. Improving tribological properties of Ti–5Zr–3Sn–5Mo–15Nb alloy by double glow plasma surface alloying. Appl Surf Sci. 2016;388:203.CrossRef
[83]
go back to reference Chen JX, Lu SH, Tan LL, Etim IP, Yang K. Comparative study on effects of different coatings on biodegradable and wear properties of Mg-2Zn-1Gd-0.5Zr alloy. Surf Coat Tech. 2018;352:273.CrossRef Chen JX, Lu SH, Tan LL, Etim IP, Yang K. Comparative study on effects of different coatings on biodegradable and wear properties of Mg-2Zn-1Gd-0.5Zr alloy. Surf Coat Tech. 2018;352:273.CrossRef
[84]
go back to reference Gradzka-Dahlke M, Dabrowski JR, Dabrowski B. Characteristic of the porous 316 stainless steel for the friction element of prosthetic joint. Wear. 2007;263:1023.CrossRef Gradzka-Dahlke M, Dabrowski JR, Dabrowski B. Characteristic of the porous 316 stainless steel for the friction element of prosthetic joint. Wear. 2007;263:1023.CrossRef
Metadata
Title
Recent advances in tribological and wear properties of biomedical metallic materials
Authors
Hua-Fang Li
Jin-Yan Huang
Gui-Cai Lin
Peng-Yu Wang
Publication date
19-06-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 11/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01796-z

Other articles of this Issue 11/2021

Rare Metals 11/2021 Go to the issue

Premium Partners