Skip to main content
Top

2020 | OriginalPaper | Chapter

33. Recent Developments in Electrode Materials for Lithium-Ion Batteries for Energy Storage Application

Authors : Moodakare B. Sahana, Raghavan Gopalan

Published in: Handbook of Advanced Ceramics and Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lithium-ion battery is a promising energy storage solution for effective use of renewable energy sources due to higher volumetric and gravimetric energy density. The advancement of lithium-ion battery technology in terms of energy, power density, cost, safety, operating temperature, and charging/discharging cycle life depends on performance of electrode materials: cathode, anode, and electrolyte. While graphite or hard carbon is mainly used as anode, three types of cathode chemistry, (i) lithium transition metal layered oxide, (ii) derivatives of spinel LiMn2O4, and (iii) phospho-olivine, are used in the commercial lithium-ion batteries. Modifications such as composition, protective coating, doping, and morphological tailoring had continuously led into the enhanced performance of the active materials and are further expected to improve. Continuous efforts in development of new class of materials such as conversion and alloying electrode materials are being carried out in order to improve energy and power density of lithium-ion batteries. In this chapter we will be discussing the recent development of traditional cathode and anode materials like graphite, hard carbon, lithium transition metal layered oxide, and derivatives of spinel LiMn2O4, LiFePO4, and new class of active materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yoo HD, Markevich E, Salitra G, Sharon D, Aurbach D (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17(3):110–121CrossRef Yoo HD, Markevich E, Salitra G, Sharon D, Aurbach D (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17(3):110–121CrossRef
2.
go back to reference Goodenough JB, Park KS (2013) The Li-Ion Rechargeable Battery: a Perspective. J Am Chem Soc 135(4):1167–1176CrossRef Goodenough JB, Park KS (2013) The Li-Ion Rechargeable Battery: a Perspective. J Am Chem Soc 135(4):1167–1176CrossRef
3.
go back to reference Liu C, Neale ZG, Cao G (2016) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19(2):109–123CrossRef Liu C, Neale ZG, Cao G (2016) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19(2):109–123CrossRef
4.
go back to reference Tang Y, Zhang Y, Li W, Ma B, Chen X (2015) Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev 44(17):5926–5940CrossRef Tang Y, Zhang Y, Li W, Ma B, Chen X (2015) Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev 44(17):5926–5940CrossRef
5.
go back to reference Tagawa K, Brodd RJ (2009) Production processes for fabrication of lithium-ion batteries. In: Yoshio M, Brodd RJ, Kozawa A (eds) Lithium-ion batteries: science and technologies. Springer, New York, pp 181–194 Tagawa K, Brodd RJ (2009) Production processes for fabrication of lithium-ion batteries. In: Yoshio M, Brodd RJ, Kozawa A (eds) Lithium-ion batteries: science and technologies. Springer, New York, pp 181–194
6.
go back to reference Bockholt H, Indrikova M, Netz A, Golks F, Kwade A (2016) The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties. J Power Sources 325:140–151CrossRef Bockholt H, Indrikova M, Netz A, Golks F, Kwade A (2016) The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties. J Power Sources 325:140–151CrossRef
7.
go back to reference An SJ, Li J, Du Z, Daniel C, Wood DL III (2017) Fast formation cycling for lithium ion batteries. J Power Sources 342:846–852CrossRef An SJ, Li J, Du Z, Daniel C, Wood DL III (2017) Fast formation cycling for lithium ion batteries. J Power Sources 342:846–852CrossRef
8.
go back to reference Nelson PA, Gallagher KG, Bloom ID, Dees DW (2012) Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles, 2nd edn. Argonne National Lab (ANL), Argonne. Medium: ED; Size: 140p Nelson PA, Gallagher KG, Bloom ID, Dees DW (2012) Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles, 2nd edn. Argonne National Lab (ANL), Argonne. Medium: ED; Size: 140p
9.
go back to reference Gaëtan P, Alex R, Sébastien M, Daniel F (2015) Cost modeling of lithium-ion battery cells for automotive applications. Energy Sci Eng 3(1):71–82CrossRef Gaëtan P, Alex R, Sébastien M, Daniel F (2015) Cost modeling of lithium-ion battery cells for automotive applications. Energy Sci Eng 3(1):71–82CrossRef
10.
go back to reference Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164(1):A5019–A5025CrossRef Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164(1):A5019–A5025CrossRef
11.
go back to reference Manthiram A (2017) An outlook on lithium ion battery technology. ACS Cent Sci 3(10): 1063–1069CrossRef Manthiram A (2017) An outlook on lithium ion battery technology. ACS Cent Sci 3(10): 1063–1069CrossRef
12.
go back to reference Ding Y, Mu D, Wu B, Wang R, Zhao Z, Wu F (2017) Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles. Appl Energy 195:586–599CrossRef Ding Y, Mu D, Wu B, Wang R, Zhao Z, Wu F (2017) Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles. Appl Energy 195:586–599CrossRef
13.
go back to reference Radin MD, Hy S, Sina M, Fang C, Liu H, Vinckeviciute J, Zhang M, Whittingham MS, Meng YS, Van der Ven A (2017) Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials. Adv Energy Mater 7(20):1602888CrossRef Radin MD, Hy S, Sina M, Fang C, Liu H, Vinckeviciute J, Zhang M, Whittingham MS, Meng YS, Van der Ven A (2017) Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials. Adv Energy Mater 7(20):1602888CrossRef
14.
go back to reference Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195(24):7904–7929CrossRef Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195(24):7904–7929CrossRef
15.
go back to reference Venkatraman S, Shin Y, Manthiram A (2003) Phase relationships and structural and chemical stabilities of charged Li1−xCoO2−δ and Li1−xNi0.85Co0.15O2−δ cathodes. Electrochem Solid-State Lett 6(1):A9–A12CrossRef Venkatraman S, Shin Y, Manthiram A (2003) Phase relationships and structural and chemical stabilities of charged Li1−xCoO2−δ and Li1−xNi0.85Co0.15O2−δ cathodes. Electrochem Solid-State Lett 6(1):A9–A12CrossRef
16.
go back to reference Sharifi-Asl S, Soto FA, Nie AM, Yuan YF, Asayesh-Ardakani H, Foroozan T, Yurkiv V, Song B, Mashayek F, Klie RF, Amine K, Lu J, Balbuena PB, Shahbazian-Yassar R (2017) Facet-dependent thermal instability in LiCoO2. Nano Lett 17(4):2165–2171CrossRef Sharifi-Asl S, Soto FA, Nie AM, Yuan YF, Asayesh-Ardakani H, Foroozan T, Yurkiv V, Song B, Mashayek F, Klie RF, Amine K, Lu J, Balbuena PB, Shahbazian-Yassar R (2017) Facet-dependent thermal instability in LiCoO2. Nano Lett 17(4):2165–2171CrossRef
17.
go back to reference Liu A, Li J, Shunmugasundaram R, Dahn JR (2017) Synthesis of Mg and Mn doped LiCoO2 and effects on high voltage cycling. J Electrochem Soc 164(7):A1655–A1664CrossRef Liu A, Li J, Shunmugasundaram R, Dahn JR (2017) Synthesis of Mg and Mn doped LiCoO2 and effects on high voltage cycling. J Electrochem Soc 164(7):A1655–A1664CrossRef
18.
go back to reference Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou SX, Guo ZP, Cho J (2017) Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv Energy Mater 7(1):21 Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou SX, Guo ZP, Cho J (2017) Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv Energy Mater 7(1):21
19.
go back to reference Park JS, Mane AU, Elam JW, Croy JR (2017) Atomic layer deposition of Al–W–fluoride on LiCoO2 cathodes: comparison of particle- and electrode-level coatings. ACS Omega 2(7): 3724–3729CrossRef Park JS, Mane AU, Elam JW, Croy JR (2017) Atomic layer deposition of Al–W–fluoride on LiCoO2 cathodes: comparison of particle- and electrode-level coatings. ACS Omega 2(7): 3724–3729CrossRef
20.
go back to reference Wang DY, Sinha NN, Petibon R, Burns JC, Dahn JR (2014) A systematic study of well-known electrolyte additives in LiCoO2/graphite pouch cells. J Power Sources 251:311–318CrossRef Wang DY, Sinha NN, Petibon R, Burns JC, Dahn JR (2014) A systematic study of well-known electrolyte additives in LiCoO2/graphite pouch cells. J Power Sources 251:311–318CrossRef
21.
go back to reference Orendorff CJ, Doughty DH (2012) Lithium ion battery safety. Electrochem Soc Interface 21(2):35CrossRef Orendorff CJ, Doughty DH (2012) Lithium ion battery safety. Electrochem Soc Interface 21(2):35CrossRef
22.
go back to reference Delmas C, Menetrier M, Croguennec L, Saadoune I, Rougier A, Pouillerie C, Prado G, Grune M, Fournes L (1999) An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties. Electrochim Acta 45(1–2):243–253CrossRef Delmas C, Menetrier M, Croguennec L, Saadoune I, Rougier A, Pouillerie C, Prado G, Grune M, Fournes L (1999) An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties. Electrochim Acta 45(1–2):243–253CrossRef
23.
go back to reference Choi W, Manthiram A (2006) Comparison of metal ion dissolutions from lithium ion battery cathodes. J Electrochem Soc 153(9):A1760–A1764CrossRef Choi W, Manthiram A (2006) Comparison of metal ion dissolutions from lithium ion battery cathodes. J Electrochem Soc 153(9):A1760–A1764CrossRef
24.
go back to reference Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74(9):094105CrossRef Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74(9):094105CrossRef
25.
go back to reference Tian CX, Lin F, Doeff MM (2018) Electrochemical characteristics of layered transition metal oxide cathode materials for lithium ion batteries: surface, bulk behavior, and thermal properties. Acc Chem Res 51(1):89–96CrossRef Tian CX, Lin F, Doeff MM (2018) Electrochemical characteristics of layered transition metal oxide cathode materials for lithium ion batteries: surface, bulk behavior, and thermal properties. Acc Chem Res 51(1):89–96CrossRef
26.
go back to reference Myung S-T, Maglia F, Park K-J, Yoon CS, Lamp P, Kim S-J, Sun Y-K (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2(1):196–223CrossRef Myung S-T, Maglia F, Park K-J, Yoon CS, Lamp P, Kim S-J, Sun Y-K (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2(1):196–223CrossRef
27.
go back to reference Xu J, Lin F, Doeff MM, Tong W (2017) A review of Ni-based layered oxides for rechargeable Li-ion batteries. J Mater Chem A 5(3):874–901CrossRef Xu J, Lin F, Doeff MM, Tong W (2017) A review of Ni-based layered oxides for rechargeable Li-ion batteries. J Mater Chem A 5(3):874–901CrossRef
28.
go back to reference Noh HJ, Youn S, Yoon CS, Sun YK (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130CrossRef Noh HJ, Youn S, Yoon CS, Sun YK (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130CrossRef
29.
go back to reference Sasaki T, Nonaka T, Oka H, Okuda C, Itou Y, Kondo Y, Takeuchi Y, Ukyo Y, Tatsumi K, Muto S (2009) Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries. J Electrochem Soc 156(4):A289–A293CrossRef Sasaki T, Nonaka T, Oka H, Okuda C, Itou Y, Kondo Y, Takeuchi Y, Ukyo Y, Tatsumi K, Muto S (2009) Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries. J Electrochem Soc 156(4):A289–A293CrossRef
30.
go back to reference Vasu S, Sahana MB, Sudakar C, Gopalan R, Sundararajan G (2017) In-situ carbon encapsulation of LiNi1/3Co1/3Mn1/3O2 using pillared ethylene glycol trapped in the metal hydroxide interlayers for enhanced cyclic stability. Electrochim Acta 251:363–377CrossRef Vasu S, Sahana MB, Sudakar C, Gopalan R, Sundararajan G (2017) In-situ carbon encapsulation of LiNi1/3Co1/3Mn1/3O2 using pillared ethylene glycol trapped in the metal hydroxide interlayers for enhanced cyclic stability. Electrochim Acta 251:363–377CrossRef
31.
go back to reference Zuo DX, Tian GL, Li X, Chen D, Shu KY (2017) Recent progress in surface coating of cathode materials for lithium ion secondary batteries. J Alloys Compd 706:24–40CrossRef Zuo DX, Tian GL, Li X, Chen D, Shu KY (2017) Recent progress in surface coating of cathode materials for lithium ion secondary batteries. J Alloys Compd 706:24–40CrossRef
32.
go back to reference Xiong DJ, Hynes T, Ellis LD, Dahn JR (2017) Effects of surface coating on gas evolution and impedance growth at Li[NixMnyCo1-x-y]O2 positive electrodes in Li-ion cells. J Electrochem Soc 164(13):A3174–A3181CrossRef Xiong DJ, Hynes T, Ellis LD, Dahn JR (2017) Effects of surface coating on gas evolution and impedance growth at Li[NixMnyCo1-x-y]O2 positive electrodes in Li-ion cells. J Electrochem Soc 164(13):A3174–A3181CrossRef
33.
go back to reference Chen S, He T, Su Y, Lu Y, Ban L, Chen L, Zhang Q, Wang J, Chen R, Wu F (2017) Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode for lithium-ion batteries. ACS Appl Mater Interfaces 9(35):29732–29743CrossRef Chen S, He T, Su Y, Lu Y, Ban L, Chen L, Zhang Q, Wang J, Chen R, Wu F (2017) Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode for lithium-ion batteries. ACS Appl Mater Interfaces 9(35):29732–29743CrossRef
34.
go back to reference Xia Y, Zheng J, Wang C, Gu M (2018) Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 49:434–452CrossRef Xia Y, Zheng J, Wang C, Gu M (2018) Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 49:434–452CrossRef
35.
go back to reference Hou PY, Zhang HZ, Zi ZY, Zhang LQ, Xu XJ (2017) Core-shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries. J Mater Chem A 5(9):4254–4279CrossRef Hou PY, Zhang HZ, Zi ZY, Zhang LQ, Xu XJ (2017) Core-shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries. J Mater Chem A 5(9):4254–4279CrossRef
36.
go back to reference Liang C, Kong F, Longo RC, Kc S, Kim J-S, Jeon S, Choi S, Cho K (2016) Unraveling the origin of instability in Ni-rich LiNi1-2xCoxMnxO2 (NCM) cathode materials. J Phys Chem C 120(12):6383–6393CrossRef Liang C, Kong F, Longo RC, Kc S, Kim J-S, Jeon S, Choi S, Cho K (2016) Unraveling the origin of instability in Ni-rich LiNi1-2xCoxMnxO2 (NCM) cathode materials. J Phys Chem C 120(12):6383–6393CrossRef
37.
go back to reference Erickson EM, Schipper F, Penki TR, Shin JY, Erk C, Chesneau FF, Markovsky B, Aurbach D (2017) Review-recent advances and remaining challenges for lithium ion battery cathodes II: lithium-rich, xLi2MnO3 (1-x)LiNiaCobMncO2. J Electrochem Soc 164(1):A6341–A6348CrossRef Erickson EM, Schipper F, Penki TR, Shin JY, Erk C, Chesneau FF, Markovsky B, Aurbach D (2017) Review-recent advances and remaining challenges for lithium ion battery cathodes II: lithium-rich, xLi2MnO3 (1-x)LiNiaCobMncO2. J Electrochem Soc 164(1):A6341–A6348CrossRef
38.
go back to reference Kumar NP, Erickson EM, Florian S, Rao PT, Nookala M, Philipp A, Hadar S, Francis A, Boris M, Doron A (2018) Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-Ion batteries. Adv Energy Mater 8(8):1702397CrossRef Kumar NP, Erickson EM, Florian S, Rao PT, Nookala M, Philipp A, Hadar S, Francis A, Boris M, Doron A (2018) Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-Ion batteries. Adv Energy Mater 8(8):1702397CrossRef
39.
go back to reference Thackeray MM, Croy JR, Lee E, Gutierrez A, He M, Park JS, Yonemoto BT, Long BR, Blauwkamp JD, Johnson CS, Shin Y, David WIF (2018) The quest for manganese-rich electrodes for lithium batteries: strategic design and electrochemical behavior. Sustain Energy Fuel 2(7):1375–1397CrossRef Thackeray MM, Croy JR, Lee E, Gutierrez A, He M, Park JS, Yonemoto BT, Long BR, Blauwkamp JD, Johnson CS, Shin Y, David WIF (2018) The quest for manganese-rich electrodes for lithium batteries: strategic design and electrochemical behavior. Sustain Energy Fuel 2(7):1375–1397CrossRef
40.
go back to reference Bhandari A, Bhattacharya J (2017) Review-manganese dissolution from spinel cathode: few unanswered questions. J Electrochem Soc 164(2):A106–A127CrossRef Bhandari A, Bhattacharya J (2017) Review-manganese dissolution from spinel cathode: few unanswered questions. J Electrochem Soc 164(2):A106–A127CrossRef
41.
go back to reference Tang DC, Sun Y, Yang ZZ, Ben LB, Gu L, Huang XJ (2014) Surface structure evolution of LiMn2O4 cathode material upon charge/discharge. Chem Mater 26(11):3535–3543CrossRef Tang DC, Sun Y, Yang ZZ, Ben LB, Gu L, Huang XJ (2014) Surface structure evolution of LiMn2O4 cathode material upon charge/discharge. Chem Mater 26(11):3535–3543CrossRef
42.
go back to reference Xu GJ, Liu ZH, Zhang CJ, Cui GL, Chen LQ (2015) Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. J Mater Chem A 3(8):4092–4123CrossRef Xu GJ, Liu ZH, Zhang CJ, Cui GL, Chen LQ (2015) Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. J Mater Chem A 3(8):4092–4123CrossRef
43.
go back to reference Lee JH, Hong JK, Jang DH, Sun YK, Oh SM (2000) Degradation mechanisms in doped spinels of LiM0.05Mn1.95O4 (M=Li, B, Al, Co, and Ni) for Li secondary batteries. J Power Sources 89(1):7–14CrossRef Lee JH, Hong JK, Jang DH, Sun YK, Oh SM (2000) Degradation mechanisms in doped spinels of LiM0.05Mn1.95O4 (M=Li, B, Al, Co, and Ni) for Li secondary batteries. J Power Sources 89(1):7–14CrossRef
44.
go back to reference Bellitto C, Bauer EM, Righini G, Green MA, Branford WR, Antonini A, Pasquali M (2004) The effect of doping LiMn2O4 spinel on its use as a cathode in Li-ion batteries: neutron diffraction and electrochemical studies. J Phys Chem Solids 65(1):29–37CrossRef Bellitto C, Bauer EM, Righini G, Green MA, Branford WR, Antonini A, Pasquali M (2004) The effect of doping LiMn2O4 spinel on its use as a cathode in Li-ion batteries: neutron diffraction and electrochemical studies. J Phys Chem Solids 65(1):29–37CrossRef
45.
go back to reference Gao Y, Myrtle K, Zhang MJ, Reimers JN, Dahn JR (1996) Valence band of LiNixMn2-xO4 and its effects an the voltage profiles of LiNixMn2-xO4/Li electrochemical cells. Phys Rev B 54(23):16670–16675CrossRef Gao Y, Myrtle K, Zhang MJ, Reimers JN, Dahn JR (1996) Valence band of LiNixMn2-xO4 and its effects an the voltage profiles of LiNixMn2-xO4/Li electrochemical cells. Phys Rev B 54(23):16670–16675CrossRef
46.
go back to reference Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 195(17):5442–5451CrossRef Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 195(17):5442–5451CrossRef
47.
go back to reference Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd\( \overline{3} \)m and P4332. Chem Mat 16(5):906–914CrossRef Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd\( \overline{3} \)m and P4332. Chem Mat 16(5):906–914CrossRef
48.
go back to reference Lu J, Lee KS (2016) Spinel cathodes for advanced lithium ion batteries: a review of challenges and recent progress. Mater Technol 31(11):628–641CrossRef Lu J, Lee KS (2016) Spinel cathodes for advanced lithium ion batteries: a review of challenges and recent progress. Mater Technol 31(11):628–641CrossRef
49.
go back to reference Yi TF, Zhu YR, Zhu XD, Shu J, Yue CB, Zhou AN (2009) A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15(6):779–784CrossRef Yi TF, Zhu YR, Zhu XD, Shu J, Yue CB, Zhou AN (2009) A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15(6):779–784CrossRef
50.
go back to reference Kim JS, Kim K, Cho W, Shin WH, Kanno R, Choi JW (2012) A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries. Nano Lett 12(12):6358–6365CrossRef Kim JS, Kim K, Cho W, Shin WH, Kanno R, Choi JW (2012) A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries. Nano Lett 12(12):6358–6365CrossRef
51.
go back to reference Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRef Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRef
52.
go back to reference Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+ / Fe2+ redox couple in iron phosphates. J Electrochem Soc 144(5): 1609–1613CrossRef Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+ / Fe2+ redox couple in iron phosphates. J Electrochem Soc 144(5): 1609–1613CrossRef
53.
go back to reference Meethong N, Huang H-YS, Carter WC, Chiang Y-M (2007) Size-dependent lithium miscibility gap in nanoscale Li1−x FePO4. Electrochem Solid-State Lett 10(5):A134–A138CrossRef Meethong N, Huang H-YS, Carter WC, Chiang Y-M (2007) Size-dependent lithium miscibility gap in nanoscale Li1−x FePO4. Electrochem Solid-State Lett 10(5):A134–A138CrossRef
54.
go back to reference Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in Lix MPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid-State Lett 7(2):A30–A32CrossRef Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in Lix MPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid-State Lett 7(2):A30–A32CrossRef
55.
go back to reference Islam MS, Driscoll DJ, Fisher CAJ, Slater PR (2005) Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mat 17(20):5085–5092CrossRef Islam MS, Driscoll DJ, Fisher CAJ, Slater PR (2005) Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mat 17(20):5085–5092CrossRef
56.
go back to reference Yiyang L, Sophie M, Jongwoo L, Chul LS, Gent WE, Stefano M, Harinarayan K, Tolek T, David S, David KAL, Chueh CW (2015) Effects of particle size, electronic connectivity, and incoherent nanoscale domains on the sequence of lithiation in LiFePO4 porous electrodes. Adv Mater 27(42):6591–6597CrossRef Yiyang L, Sophie M, Jongwoo L, Chul LS, Gent WE, Stefano M, Harinarayan K, Tolek T, David S, David KAL, Chueh CW (2015) Effects of particle size, electronic connectivity, and incoherent nanoscale domains on the sequence of lithiation in LiFePO4 porous electrodes. Adv Mater 27(42):6591–6597CrossRef
57.
go back to reference Li L, Wu L, Wu F, Song S, Zhang X, Fu C, Yuan D, Xiang Y (2017) Review – recent research progress in surface modification of LiFePO4 cathode materials. J Electrochem Soc 164(9):A2138–A2150CrossRef Li L, Wu L, Wu F, Song S, Zhang X, Fu C, Yuan D, Xiang Y (2017) Review – recent research progress in surface modification of LiFePO4 cathode materials. J Electrochem Soc 164(9):A2138–A2150CrossRef
58.
go back to reference Sahana MB, Vasu S, Sasikala N, Anandan S, Sepehri-Amin H, Sudakar C, Gopalan R (2014) Raman spectral signature of Mn-rich nanoscale phase segregations in carbon free LiFe1-xMnxPO4 prepared by hydrothermal technique. RSC Adv 4(110):64429–64437CrossRef Sahana MB, Vasu S, Sasikala N, Anandan S, Sepehri-Amin H, Sudakar C, Gopalan R (2014) Raman spectral signature of Mn-rich nanoscale phase segregations in carbon free LiFe1-xMnxPO4 prepared by hydrothermal technique. RSC Adv 4(110):64429–64437CrossRef
59.
go back to reference Zaghib K, Mauger A, Julien CM (2015) Olivine-based cathode materials. In: Zhang Z, Zhang SS (eds) Rechargeable batteries: materials, technologies and new trends. Springer, Cham, pp 25–65CrossRef Zaghib K, Mauger A, Julien CM (2015) Olivine-based cathode materials. In: Zhang Z, Zhang SS (eds) Rechargeable batteries: materials, technologies and new trends. Springer, Cham, pp 25–65CrossRef
60.
go back to reference Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264CrossRef Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264CrossRef
61.
go back to reference Winter M, Moeller K-C, Besenhard JO (2003) Carbonaceous and graphitic anodes. In: Nazri G-A, Pistoia G (eds) Lithium batteries: science and technology. Springer, Boston, pp 145–194CrossRef Winter M, Moeller K-C, Besenhard JO (2003) Carbonaceous and graphitic anodes. In: Nazri G-A, Pistoia G (eds) Lithium batteries: science and technology. Springer, Boston, pp 145–194CrossRef
62.
go back to reference Peled E, Menkin S (2017) Review-SEI: past, present and future. J Electrochem Soc 164(7):A1703–A1719CrossRef Peled E, Menkin S (2017) Review-SEI: past, present and future. J Electrochem Soc 164(7):A1703–A1719CrossRef
63.
go back to reference Qi W, Shapter JG, Wu Q, Yin T, Gao G, Cui D (2017) Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. J Mater Chem A 5(37):19521–19540CrossRef Qi W, Shapter JG, Wu Q, Yin T, Gao G, Cui D (2017) Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. J Mater Chem A 5(37):19521–19540CrossRef
64.
go back to reference Nozaki H, Nagaoka K, Hoshi K, Ohta N, Inagaki M (2009) Carbon-coated graphite for anode of lithium ion rechargeable batteries: carbon coating conditions and precursors. J Power Sources 194(1):486–493CrossRef Nozaki H, Nagaoka K, Hoshi K, Ohta N, Inagaki M (2009) Carbon-coated graphite for anode of lithium ion rechargeable batteries: carbon coating conditions and precursors. J Power Sources 194(1):486–493CrossRef
65.
go back to reference Zheng H, Qu Q, Zhang L, Liu G, Battaglia VS (2012) Hard carbon: a promising lithium-ion battery anode for high temperature applications with ionic electrolyte. RSC Adv 2(11): 4904–4912CrossRef Zheng H, Qu Q, Zhang L, Liu G, Battaglia VS (2012) Hard carbon: a promising lithium-ion battery anode for high temperature applications with ionic electrolyte. RSC Adv 2(11): 4904–4912CrossRef
66.
go back to reference Liu YH, Xue JS, Zheng T, Dahn JR (1996) Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34(2):193–200CrossRef Liu YH, Xue JS, Zheng T, Dahn JR (1996) Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34(2):193–200CrossRef
67.
go back to reference Xu GJ, Han PX, Dong SM, Liu HS, Cui GL, Chen LQ (2017) Li4Ti5O12-based energy conversion and storage systems: status and prospects. Coord Chem Rev 343:139–184CrossRef Xu GJ, Han PX, Dong SM, Liu HS, Cui GL, Chen LQ (2017) Li4Ti5O12-based energy conversion and storage systems: status and prospects. Coord Chem Rev 343:139–184CrossRef
68.
go back to reference Jung HG, Jang MW, Hassoun J, Sun YK, Scrosati B (2011) A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat Commun 2:516CrossRef Jung HG, Jang MW, Hassoun J, Sun YK, Scrosati B (2011) A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat Commun 2:516CrossRef
69.
go back to reference Lv W, Gu J, Niu Y, Wen K, He W (2017) Review-gassing mechanism and suppressing solutions in Li4Ti5O12-based lithium-ion batteries. J Electrochem Soc 164(9):A2213–A2224CrossRef Lv W, Gu J, Niu Y, Wen K, He W (2017) Review-gassing mechanism and suppressing solutions in Li4Ti5O12-based lithium-ion batteries. J Electrochem Soc 164(9):A2213–A2224CrossRef
70.
go back to reference Sha YJ, Xu XM, Li L, Cai R, Shao ZP (2016) Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries. J Power Sources 314:18–27CrossRef Sha YJ, Xu XM, Li L, Cai R, Shao ZP (2016) Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries. J Power Sources 314:18–27CrossRef
71.
go back to reference Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262CrossRef
72.
go back to reference Wu HB, Chen JS, Hng HH, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4(8):2526–2542CrossRef Wu HB, Chen JS, Hng HH, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4(8):2526–2542CrossRef
73.
go back to reference Rosa Palacin M (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38(9):2565–2575CrossRef Rosa Palacin M (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38(9):2565–2575CrossRef
74.
go back to reference Gao X-P, Yang H-X (2010) Multi-electron reaction materials for high energy density batteries. Energy Environ Sci 3(2):174–189CrossRef Gao X-P, Yang H-X (2010) Multi-electron reaction materials for high energy density batteries. Energy Environ Sci 3(2):174–189CrossRef
75.
go back to reference Yu SH, Feng XR, Zhang N, Seok J, Abruna HD (2018) Understanding conversion-type electrodes for lithium rechargeable batteries. Acc Chem Res 51(2):273–281CrossRef Yu SH, Feng XR, Zhang N, Seok J, Abruna HD (2018) Understanding conversion-type electrodes for lithium rechargeable batteries. Acc Chem Res 51(2):273–281CrossRef
76.
go back to reference Kraytsberg A, Ein-Eli Y (2017) A critical review-promises and barriers of conversion electrodes for Li-ion batteries. J Solid State Electrochem 21(7):1907–1923CrossRef Kraytsberg A, Ein-Eli Y (2017) A critical review-promises and barriers of conversion electrodes for Li-ion batteries. J Solid State Electrochem 21(7):1907–1923CrossRef
77.
go back to reference Li H, Balaya P, Maier J (2004) Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc 151(11):A1878–A1885CrossRef Li H, Balaya P, Maier J (2004) Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc 151(11):A1878–A1885CrossRef
78.
go back to reference Croguennec L, Palacin MR (2015) Recent achievements on inorganic electrode materials for lithium-ion batteries. J Am Chem Soc 137(9):3140–3156CrossRef Croguennec L, Palacin MR (2015) Recent achievements on inorganic electrode materials for lithium-ion batteries. J Am Chem Soc 137(9):3140–3156CrossRef
79.
go back to reference Zhang Y, Zhou Q, Zhu J, Yan Q, Dou SX, Sun W (2017) Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv Funct Mater 27(35):1702317CrossRef Zhang Y, Zhou Q, Zhu J, Yan Q, Dou SX, Sun W (2017) Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv Funct Mater 27(35):1702317CrossRef
80.
go back to reference Mahmood N, Tang T, Hou Y (2016) Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Energy Mater 6(17):1600374CrossRef Mahmood N, Tang T, Hou Y (2016) Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Energy Mater 6(17):1600374CrossRef
81.
go back to reference Huang T, Yang YX, Pu KC, Zhang JX, Gao MX, Pan HG, Liu YF (2017) Linking particle size to improved electrochemical performance of SiO anodes for Li-ion batteries. RSC Adv 7(4):2273–2280CrossRef Huang T, Yang YX, Pu KC, Zhang JX, Gao MX, Pan HG, Liu YF (2017) Linking particle size to improved electrochemical performance of SiO anodes for Li-ion batteries. RSC Adv 7(4):2273–2280CrossRef
Metadata
Title
Recent Developments in Electrode Materials for Lithium-Ion Batteries for Energy Storage Application
Authors
Moodakare B. Sahana
Raghavan Gopalan
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-16347-1_44

Premium Partners