Skip to main content
Top

2022 | OriginalPaper | Chapter

Recent Trend on the Studies of Recycling Technologies of Rare Earth Metals

Authors : Osamu Takeda, Xin Lu, Hongmin Zhu

Published in: REWAS 2022: Developing Tomorrow’s Technical Cycles (Volume I)

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There is uncertainty in the supply of rare earth resources. Technical developments on the resource saving of rare earths and the alternate materials are important challenges, and the development of recycling technologies is also important for securing stable supply of rare earth resources. The waste of neodymium magnet that is the industrially-important product containing rare earth metals is currently recycled by a hydrometallurgical method. However, the hydrometallurgical method generates a large volume of waste solution and consumes a large amount of energy. In order to develop an environmentally-sound recycling process, various studies on pyrometallurgical methods have been conducted. One of the authors developed the molten metal extraction method and the flux remelting method. The pyrometallurgical methods are anticipated as the recycling processes with small waste generation and low energy consumption. Research and development on environmentally-sound recycling technologies for rare earths has to be advanced from environmental aspects as well as economic aspects.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shirayama S, Okabe TH (2011) Current status of rare earth elements and their recycling processes. J. Soc. Automotive Engineers Jpn 65:87–94 (in Japanese) Shirayama S, Okabe TH (2011) Current status of rare earth elements and their recycling processes. J. Soc. Automotive Engineers Jpn 65:87–94 (in Japanese)
2.
go back to reference Industrial rare metal, annual review, No. 129 (2013), p 40; No. 130 (2014), p 42; No. 131 (2015), p 38; No. 132 (2016), p 46; No. 133 (2017), p 37; No. 134 (2018), p 39; No. 135 (2019), p 46; No. 136 (2020), p 38. Arumu Publisher, Tokyo (in Japanese) Industrial rare metal, annual review, No. 129 (2013), p 40; No. 130 (2014), p 42; No. 131 (2015), p 38; No. 132 (2016), p 46; No. 133 (2017), p 37; No. 134 (2018), p 39; No. 135 (2019), p 46; No. 136 (2020), p 38. Arumu Publisher, Tokyo (in Japanese)
3.
go back to reference Takeda O, Okabe TH (2014) Current status on resource and recycling technology for rare earths. Metall Mater Trans E 1A:160–173 Takeda O, Okabe TH (2014) Current status on resource and recycling technology for rare earths. Metall Mater Trans E 1A:160–173
4.
go back to reference US. Geological Survey (2021) Mineral commodity summaries (USGS, 2021) US. Geological Survey (2021) Mineral commodity summaries (USGS, 2021)
5.
go back to reference Takeda O, Uda T, Okabe TH (2014) Rare earth, titanium group metals, and reactive metals production. In: Seetharaman S (ed) Treatise on process metallurgy, vol 3, Elsevier Inc., Oxford, UK, pp 995–1069 Takeda O, Uda T, Okabe TH (2014) Rare earth, titanium group metals, and reactive metals production. In: Seetharaman S (ed) Treatise on process metallurgy, vol 3, Elsevier Inc., Oxford, UK, pp 995–1069
6.
go back to reference Tanaka M, Oki T, Koyama K, Narita H, Oishi T (2013) Recycling of rare earths from scrap. Handb Phys Chem Rare Earths 43:159–210CrossRef Tanaka M, Oki T, Koyama K, Narita H, Oishi T (2013) Recycling of rare earths from scrap. Handb Phys Chem Rare Earths 43:159–210CrossRef
7.
go back to reference Binnemans K, Jones PT, Blanpain B, Gerven TV, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22CrossRef Binnemans K, Jones PT, Blanpain B, Gerven TV, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22CrossRef
8.
go back to reference Nakamura E (2006) Recycling of rare earths. In: Harada K (ed) Alternate materials and recycling of rare metals. CMC Publishing, Tokyo, pp 296–304 (in Japanese) Nakamura E (2006) Recycling of rare earths. In: Harada K (ed) Alternate materials and recycling of rare metals. CMC Publishing, Tokyo, pp 296–304 (in Japanese)
9.
go back to reference Adachi G, Murase K, Shinozaki K, Machida K (1992) Mutual separation characteristics for lanthanoid elements via gas phase complex with alkaline chlorides. Chem Lett 21:511–514CrossRef Adachi G, Murase K, Shinozaki K, Machida K (1992) Mutual separation characteristics for lanthanoid elements via gas phase complex with alkaline chlorides. Chem Lett 21:511–514CrossRef
10.
go back to reference Uda T, Jacob KT, Hirasawa M (2000) Technique for enhanced rare earth separation. Science 289:2326–2329CrossRef Uda T, Jacob KT, Hirasawa M (2000) Technique for enhanced rare earth separation. Science 289:2326–2329CrossRef
11.
go back to reference Uda T (2002) Recovery of rare earths from magnet sludge by FeCl2. Mater Trans 43:55–62CrossRef Uda T (2002) Recovery of rare earths from magnet sludge by FeCl2. Mater Trans 43:55–62CrossRef
12.
go back to reference Asabe K, Saguchi A, Takahashi W, Suzuki RO, Ono K (2001) Recycling of rare earth magnet scraps: Part I, carbon removal by high temperature oxidation. Mater Trans 42:2487–2491CrossRef Asabe K, Saguchi A, Takahashi W, Suzuki RO, Ono K (2001) Recycling of rare earth magnet scraps: Part I, carbon removal by high temperature oxidation. Mater Trans 42:2487–2491CrossRef
13.
go back to reference Shirayama S, Okabe TH (2018) Selective extraction and recovery of Nd and Dy from Nd–Fe–B magnet scrap by utilizing molten MgCl2. Metall Mater Trans B 49B:1067–1078CrossRef Shirayama S, Okabe TH (2018) Selective extraction and recovery of Nd and Dy from Nd–Fe–B magnet scrap by utilizing molten MgCl2. Metall Mater Trans B 49B:1067–1078CrossRef
14.
go back to reference Oishi T, Konishi H, Nohira T, Tanaka M, Usui T (2010) Separation and recovery of rare earth metals by molten salt electrolysis using alloy diaphragm. Kagaku Kogaku Ronbunshu 36:299–303 (in Japanese) Oishi T, Konishi H, Nohira T, Tanaka M, Usui T (2010) Separation and recovery of rare earth metals by molten salt electrolysis using alloy diaphragm. Kagaku Kogaku Ronbunshu 36:299–303 (in Japanese)
15.
go back to reference Saito T, Sato H, Ozawa S, Yu J, Motegi T (2003) The extraction of Nd from waste Nd–Fe–B alloys by the glass slag method. J Alloys Compd 353:189–193CrossRef Saito T, Sato H, Ozawa S, Yu J, Motegi T (2003) The extraction of Nd from waste Nd–Fe–B alloys by the glass slag method. J Alloys Compd 353:189–193CrossRef
16.
go back to reference Tokita Y, Shibata E, Iizuka J, Nakamura T (2013) Separation of rare earth elements and recovery of Fe–B alloy from neodymium magnet using molten flux. In: Abstracts of spring meeting of the mining and materials processing Institute of Japan, pp 99–100 (in Japanese) Tokita Y, Shibata E, Iizuka J, Nakamura T (2013) Separation of rare earth elements and recovery of Fe–B alloy from neodymium magnet using molten flux. In: Abstracts of spring meeting of the mining and materials processing Institute of Japan, pp 99–100 (in Japanese)
17.
go back to reference Hoshi H, Miyamoto Y, Furusawa K (2014) Technique for separating rare earth elements from R–Fe–B magnets by carbothermal reduction method. J Jpn Inst Metals 78:258–266 (in Japanese) Hoshi H, Miyamoto Y, Furusawa K (2014) Technique for separating rare earth elements from R–Fe–B magnets by carbothermal reduction method. J Jpn Inst Metals 78:258–266 (in Japanese)
18.
go back to reference Abrahami ST, Xiao Y, Yang Y (2015) Rare-earth elements recovery from post-consumer hard-disc drives. Trans Inst Min Metall C 124:106–115 Abrahami ST, Xiao Y, Yang Y (2015) Rare-earth elements recovery from post-consumer hard-disc drives. Trans Inst Min Metall C 124:106–115
19.
go back to reference Bian Y, Guo S, Jiang L, Liu J, Tang K, Ding W (2016) Recovery of rare earth elements from NdFeB magnet by VIM-HMS method. ACS Sustain Chem Eng 4:810–818CrossRef Bian Y, Guo S, Jiang L, Liu J, Tang K, Ding W (2016) Recovery of rare earth elements from NdFeB magnet by VIM-HMS method. ACS Sustain Chem Eng 4:810–818CrossRef
20.
go back to reference Okabe TH, Takeda O, Fukuda K, Umetsu Y (2003) Direct extraction and recovery of neodymium metal from magnet scrap. Mater Trans 44:798–801CrossRef Okabe TH, Takeda O, Fukuda K, Umetsu Y (2003) Direct extraction and recovery of neodymium metal from magnet scrap. Mater Trans 44:798–801CrossRef
21.
go back to reference Takeda O, Nakano K, Sato Y (2014) Recycling of rare earth magnet waste by removing rare earth oxide with molten fluoride. Mater Trans 55:334–341CrossRef Takeda O, Nakano K, Sato Y (2014) Recycling of rare earth magnet waste by removing rare earth oxide with molten fluoride. Mater Trans 55:334–341CrossRef
22.
go back to reference Takeda O, Okabe TH, Umetsu Y (2006) Recovery of neodymium from a mixture of magnet scrap and other scrap. J Alloys Comp 408–412:387–390CrossRef Takeda O, Okabe TH, Umetsu Y (2006) Recovery of neodymium from a mixture of magnet scrap and other scrap. J Alloys Comp 408–412:387–390CrossRef
23.
go back to reference Xu Y, Chumbley LS, Laabs FC (2000) Liquid metal extraction of Nd from NdFeB magnet scrap. J Mater Res 15:2296–2304CrossRef Xu Y, Chumbley LS, Laabs FC (2000) Liquid metal extraction of Nd from NdFeB magnet scrap. J Mater Res 15:2296–2304CrossRef
24.
go back to reference Chae HJ, Kim YD, Kim BS, Kim JG, Kim T (2014) Experimental investigation of diffusion behavior between molten Mg and Nd–Fe–B magnets. J Alloys Compd 586:S143–S149CrossRef Chae HJ, Kim YD, Kim BS, Kim JG, Kim T (2014) Experimental investigation of diffusion behavior between molten Mg and Nd–Fe–B magnets. J Alloys Compd 586:S143–S149CrossRef
25.
go back to reference Moore M, Gebert A, Stoica M, Uhlemann M, Löser W (2015) A route for recycling Nd from Nd–Fe–B magnets using Cu melts. J Alloys Compd 647:997–1006 Moore M, Gebert A, Stoica M, Uhlemann M, Löser W (2015) A route for recycling Nd from Nd–Fe–B magnets using Cu melts. J Alloys Compd 647:997–1006
26.
go back to reference Akahori T, Miyamoto Y, Saeki T, Okamoto M, Okabe TH (2017) Optimum conditions for extracting rare earth metals from waste magnets by using molten magnesium. J Alloys Compd 703:337–343CrossRef Akahori T, Miyamoto Y, Saeki T, Okamoto M, Okabe TH (2017) Optimum conditions for extracting rare earth metals from waste magnets by using molten magnesium. J Alloys Compd 703:337–343CrossRef
Metadata
Title
Recent Trend on the Studies of Recycling Technologies of Rare Earth Metals
Authors
Osamu Takeda
Xin Lu
Hongmin Zhu
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-92563-5_27