Skip to main content
Top

2018 | OriginalPaper | Chapter

4. Recent Trends in the Processing and Applications of Carbon Nanotubes and C-MEMS-Based Carbon Nanowires

Authors : Bidhan Pramanick, Merin Mary Meyn, Kavita Shrivastava, Sergio O. Martinez-Chapa, Marc J. Madou

Published in: Nanomaterials and Their Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we review the processing of carbon nanotubes from the first reported work to the present and cover a myriad of CNT applications. For CNT processing, the three most used techniques, i.e., arc discharge, laser ablation, and chemical vapor deposition for both multiwall and single-wall CNTs are detailed. We will learn that these fabrication techniques often need to be adapted to serve a specific application. We analyze processing techniques for CNT application in gas sensors, biosensors, optical sensors, supercapacitors, micro-/nanoelectronics, and in nanoelectromechanical systems. Since the poor adhesion between CNTs and substrates often limits their application, we also survey the work of researchers who developed surface modification techniques. Although CNT research is quite a mature field, it still faces major challenges, including making ohmic contacts, selecting for a precise tube diameter and a precise tube length as well as problems with nanotube positioning accuracy. This explains why the large-scale manufacture of CNT devices remains a daunting task. Due to these limitations in the use of CNTs in a manufacturing environment, we propose an alternative, i.e., C-MEMS or carbon-MEMS. A common C-MEMS fabrication process starts with photolithography of a high-carbon content photosensitive polymer precursor and it is followed by carbonization, also called pyrolysis, of the patterned polymer. Carbon nanowires (CNWs), fabricated by electrospinning of suspended polymer nanowires and photolithography of the contact pads for the suspended wires to attach too and the subsequent pyrolysis of this hybrid construct, have the potential of alleviating some of the aforementioned problems with CNTs. We review the C-MEMS fabrication process of CNWs in detail, compare their properties with CNTs, and discuss their various applications in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Iijima, Helical microtubules of graphitic carbon. Nature 314, 56–58 (1991)CrossRef S. Iijima, Helical microtubules of graphitic carbon. Nature 314, 56–58 (1991)CrossRef
2.
go back to reference H.H. Kim, H.J. Kim, in The Preparation of Carbon Nanotubes by DC arc Discharge Process Using Xylene-Ferrocene as a Floating Catalyst Precursor. NMP47, Nanotechnology Materials and Devices Conference, IEEE, (2006), pp. 496–497 H.H. Kim, H.J. Kim, in The Preparation of Carbon Nanotubes by DC arc Discharge Process Using Xylene-Ferrocene as a Floating Catalyst Precursor. NMP47, Nanotechnology Materials and Devices Conference, IEEE, (2006), pp. 496–497
3.
go back to reference Y. Sato, K. Motomiya, B. Jeyadevan, K. Tohji, G. Sato, H. Ishida, T. Hirata, R. Hatakeyama, Effect of cerium ions in an arc peripheral plasma on the growth of radial single-walled carbon nanotubes. J. Appl. Phys. 98, 094313 (2005)CrossRef Y. Sato, K. Motomiya, B. Jeyadevan, K. Tohji, G. Sato, H. Ishida, T. Hirata, R. Hatakeyama, Effect of cerium ions in an arc peripheral plasma on the growth of radial single-walled carbon nanotubes. J. Appl. Phys. 98, 094313 (2005)CrossRef
4.
go back to reference M. Kanai, A. Koshio, H. Shinohara, T. Mieno, A. Kasuya, Y. Ando, X. Zhao, High-yield synthesis of single-walled carbon nanotubes by gravity-free arc discharge. Appl. Phys. Lett. 79, 2967 (2001)CrossRef M. Kanai, A. Koshio, H. Shinohara, T. Mieno, A. Kasuya, Y. Ando, X. Zhao, High-yield synthesis of single-walled carbon nanotubes by gravity-free arc discharge. Appl. Phys. Lett. 79, 2967 (2001)CrossRef
5.
go back to reference M. Keidar, I. Levchenko, T. Arbel, M. Alexander, A.M. Waas, K.K. Ostrikov, Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge. J. Appl. Phys. 103, 094318 (2008)CrossRef M. Keidar, I. Levchenko, T. Arbel, M. Alexander, A.M. Waas, K.K. Ostrikov, Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge. J. Appl. Phys. 103, 094318 (2008)CrossRef
6.
go back to reference T. Sugai, H. Omote, S. Bandow, N. Tanaka, H. Shinohara, Production of fullerenes and single-wall carbon nanotubes by high-temperature pulsed arc discharge. J. Chem. Phys. 112, 6000 (2000)CrossRef T. Sugai, H. Omote, S. Bandow, N. Tanaka, H. Shinohara, Production of fullerenes and single-wall carbon nanotubes by high-temperature pulsed arc discharge. J. Chem. Phys. 112, 6000 (2000)CrossRef
7.
go back to reference Y. Ando, X. Zhao, K. Hirahara, S. Iijima, Production of thick single-walled carbon nanotubes by arc discharge in hydrogen ambience. AIP Conf. Proc. 590, 7 (2001)CrossRef Y. Ando, X. Zhao, K. Hirahara, S. Iijima, Production of thick single-walled carbon nanotubes by arc discharge in hydrogen ambience. AIP Conf. Proc. 590, 7 (2001)CrossRef
8.
go back to reference T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49–54 (1995)CrossRef T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49–54 (1995)CrossRef
9.
go back to reference A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)CrossRef A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)CrossRef
10.
go back to reference J. Chae, X. Ho, J.A. Rogers, K. Jain, Patterning of single walled carbon nanotubes using a low-fluence excimer laser photoablation process. Appl. Phys. Lett. 92, 173115 (2008)CrossRef J. Chae, X. Ho, J.A. Rogers, K. Jain, Patterning of single walled carbon nanotubes using a low-fluence excimer laser photoablation process. Appl. Phys. Lett. 92, 173115 (2008)CrossRef
11.
go back to reference J. Chae, K. Jain, Patterning of carbon nanotubes by material assisted laser ablation process. IEEE Trans. Nanotechnol. 9(3), 381–385 (2010)CrossRef J. Chae, K. Jain, Patterning of carbon nanotubes by material assisted laser ablation process. IEEE Trans. Nanotechnol. 9(3), 381–385 (2010)CrossRef
12.
go back to reference T. Wang, J. Shang, J. Liu, in Preparation of VACNT TIM by a Novel Metallization and Chemical Bonding Process. 13th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP) (2012), pp. 1646–1649 T. Wang, J. Shang, J. Liu, in Preparation of VACNT TIM by a Novel Metallization and Chemical Bonding Process. 13th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP) (2012), pp. 1646–1649
13.
go back to reference B.T. Nguyen, X.T. Than, V.C. Nguyen, T. Thanh, T. Ngo, H.T. Bui, X.N. Nguyen, H.K. Phan, N.M. Phan, Fabrication of horizontally aligned ultra-long single-walled carbon nanotubes on Si substrates using the fast-heating chemical vapour deposition method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 025010 (2012) B.T. Nguyen, X.T. Than, V.C. Nguyen, T. Thanh, T. Ngo, H.T. Bui, X.N. Nguyen, H.K. Phan, N.M. Phan, Fabrication of horizontally aligned ultra-long single-walled carbon nanotubes on Si substrates using the fast-heating chemical vapour deposition method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 025010 (2012)
14.
go back to reference Y. Matsuoka, I.T. Clark, M. Yoshimura, Growth mechanism of multilayer-graphene-capped, vertically aligned multiwalled carbon nanotube arrays. J. Vac. Sci. Technol. B 29(6), 061801 (2011)CrossRef Y. Matsuoka, I.T. Clark, M. Yoshimura, Growth mechanism of multilayer-graphene-capped, vertically aligned multiwalled carbon nanotube arrays. J. Vac. Sci. Technol. B 29(6), 061801 (2011)CrossRef
15.
go back to reference M.A. Nguyen, D.T. Ngo, V.T. Le, D.V. Cao, Synthesis of single-walled carbon nanotubes over Co–Mo/Al2O3 catalyst by the catalytic chemical vapour deposition of methane. Adv. Nat. Sci.: Nanosci. Nanotechnol. 4, 035018 (2013) M.A. Nguyen, D.T. Ngo, V.T. Le, D.V. Cao, Synthesis of single-walled carbon nanotubes over Co–Mo/Al2O3 catalyst by the catalytic chemical vapour deposition of methane. Adv. Nat. Sci.: Nanosci. Nanotechnol. 4, 035018 (2013)
16.
go back to reference S. Ramakrishnan, E.J. Jelmy, A. Baladandapani, M. Rangarajan, N.K. Kothurkar, Synthesis of multiwalled carbon nanotubes using RF-CCVD and a bimetallic catalyst. AIP Conf. Proc. 1447, 275–276 (2012)CrossRef S. Ramakrishnan, E.J. Jelmy, A. Baladandapani, M. Rangarajan, N.K. Kothurkar, Synthesis of multiwalled carbon nanotubes using RF-CCVD and a bimetallic catalyst. AIP Conf. Proc. 1447, 275–276 (2012)CrossRef
17.
go back to reference J. Lee, S. Choi, in Fabrication of Carbon Nanotubes by Anodic Aluminum Oxide Nano-template. NMP12, Nanotechnology Materials and Devices Conference, IEEE (2006), pp. 426–427 J. Lee, S. Choi, in Fabrication of Carbon Nanotubes by Anodic Aluminum Oxide Nano-template. NMP12, Nanotechnology Materials and Devices Conference, IEEE (2006), pp. 426–427
18.
go back to reference J. Wu, M. Eastman, T. Gutu, M. Wyse, J. Jiao, S.-M. Kim, M. Mann, Y. Zhang, K.B.K. Teo, Fabrication of carbon nanotube-based nanodevices using a combination technique of focused ion beam and plasma-enhanced chemical vapour deposition. Appl. Phys. Lett. 91, 173122 (2007)CrossRef J. Wu, M. Eastman, T. Gutu, M. Wyse, J. Jiao, S.-M. Kim, M. Mann, Y. Zhang, K.B.K. Teo, Fabrication of carbon nanotube-based nanodevices using a combination technique of focused ion beam and plasma-enhanced chemical vapour deposition. Appl. Phys. Lett. 91, 173122 (2007)CrossRef
19.
go back to reference W.K. Wong, C.S. Lee, S.T. Lee, Uniform-diameter, aligned carbon nanotubes from microwave plasma-enhanced chemical-vapour deposition. J. Appl. Phys. 97, 084307 (2005)CrossRef W.K. Wong, C.S. Lee, S.T. Lee, Uniform-diameter, aligned carbon nanotubes from microwave plasma-enhanced chemical-vapour deposition. J. Appl. Phys. 97, 084307 (2005)CrossRef
20.
go back to reference G.I. Shim, Y. Kojima, S. Kono, Y. Ohno, T. Ishijima, Fabrication of carbon nanotubes by slot-excited microwave plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 47, 5652–5655 (2008)CrossRef G.I. Shim, Y. Kojima, S. Kono, Y. Ohno, T. Ishijima, Fabrication of carbon nanotubes by slot-excited microwave plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 47, 5652–5655 (2008)CrossRef
21.
go back to reference K.S. Kim, G. Cota-Sanchez, C.T. Kingston, M. Imris, B. Simard, G. Soucy, Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J. Phys. D Appl. Phys. 40, 2375–2387 (2007)CrossRef K.S. Kim, G. Cota-Sanchez, C.T. Kingston, M. Imris, B. Simard, G. Soucy, Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J. Phys. D Appl. Phys. 40, 2375–2387 (2007)CrossRef
22.
go back to reference J.-T Huang, C.-H Lin, P.-C Chang, in Low-temperature Fabrication Method of Carbon Nanotubes-Based Gas Sensor. International Conference on Electronic Materials and Packaging (2008), pp. 57–60 J.-T Huang, C.-H Lin, P.-C Chang, in Low-temperature Fabrication Method of Carbon Nanotubes-Based Gas Sensor. International Conference on Electronic Materials and Packaging (2008), pp. 57–60
23.
go back to reference S. Dhall, N. Jaggi, R. Nathawat, Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens. Actuators A 201, 321–327 (2013)CrossRef S. Dhall, N. Jaggi, R. Nathawat, Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens. Actuators A 201, 321–327 (2013)CrossRef
24.
go back to reference J.-H. Yun, H. Chang-Soo, J. Kim, J.-W. Song, D.-H. Shin, Y.-G. Park, in Fabrication of Carbon Nanotube Sensor Device by Inkjet Printing. Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems (2008), pp. 506–509 J.-H. Yun, H. Chang-Soo, J. Kim, J.-W. Song, D.-H. Shin, Y.-G. Park, in Fabrication of Carbon Nanotube Sensor Device by Inkjet Printing. Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems (2008), pp. 506–509
25.
go back to reference M. Baghgar, Y. Abdi, E. Arzi, Fabrication of low-pressure field ionization gas sensor using bent carbon nanotubes. J. Phys. D Appl. Phys. 42, 135502 (2009)CrossRef M. Baghgar, Y. Abdi, E. Arzi, Fabrication of low-pressure field ionization gas sensor using bent carbon nanotubes. J. Phys. D Appl. Phys. 42, 135502 (2009)CrossRef
26.
go back to reference J. Huang, J. Wang, C. Gu, K. Yu, F. Meng, J. Liu, A novel highly sensitive gas ionization sensor for ammonia detection. Sens. Actuators A 150, 218–223 (2009)CrossRef J. Huang, J. Wang, C. Gu, K. Yu, F. Meng, J. Liu, A novel highly sensitive gas ionization sensor for ammonia detection. Sens. Actuators A 150, 218–223 (2009)CrossRef
27.
go back to reference D. Janagama, P. Goud, R. Markondeya, M. Iyer, T. Rao, in Biofunctionalization of Multi-walled Carbon Nanotubes (MWNTs) for the Fabrication of Protein Nano Biosensors. 11th National symposium on Advanced Packaging Materials: Processes, Properties and Interface (2006), pp. 119–121 D. Janagama, P. Goud, R. Markondeya, M. Iyer, T. Rao, in Biofunctionalization of Multi-walled Carbon Nanotubes (MWNTs) for the Fabrication of Protein Nano Biosensors. 11th National symposium on Advanced Packaging Materials: Processes, Properties and Interface (2006), pp. 119–121
28.
go back to reference C.K.M. Fung, N. Xi, B. Shanker, K.W.C. Lai, J. Zhang, H. Chen, Y. Luo, in Design and Fabrication of Nano Antenna for Carbon Nanotube Infrared Detector. 8th IEEE Conference on Nanotechnology (2008), pp. 205–208 C.K.M. Fung, N. Xi, B. Shanker, K.W.C. Lai, J. Zhang, H. Chen, Y. Luo, in Design and Fabrication of Nano Antenna for Carbon Nanotube Infrared Detector. 8th IEEE Conference on Nanotechnology (2008), pp. 205–208
29.
go back to reference R. Sharma, A. AI-Hamry, S. Vijayragavan, A. Benchirouf, A. Sanli, C. Miiller, O. Kanoun, in Single-Wall Carbon Nanotubes Based Near-Infrared Sensors on Flexible Substrate. 11th International Multi-Conference on Systems, Signals and Devices (2014), pp. 1–5 R. Sharma, A. AI-Hamry, S. Vijayragavan, A. Benchirouf, A. Sanli, C. Miiller, O. Kanoun, in Single-Wall Carbon Nanotubes Based Near-Infrared Sensors on Flexible Substrate. 11th International Multi-Conference on Systems, Signals and Devices (2014), pp. 1–5
30.
go back to reference H. Oh, J.-J. Kim, W. Song, S. Moon, N. Kim, J. Kim, N. Park, Fabrication of n-type carbon nanotube field-effect transistors by Al doping. Appl. Phys. Lett. 88, 103503 (2006)CrossRef H. Oh, J.-J. Kim, W. Song, S. Moon, N. Kim, J. Kim, N. Park, Fabrication of n-type carbon nanotube field-effect transistors by Al doping. Appl. Phys. Lett. 88, 103503 (2006)CrossRef
31.
go back to reference R. Nouchi, H. Tomita, A. Ogura, H. Kataura, M. Shiraishi, Logic circuits using solution-processed single-walled carbon nanotube transistors. Appl. Phys. Lett. 92, 253507 (2008)CrossRef R. Nouchi, H. Tomita, A. Ogura, H. Kataura, M. Shiraishi, Logic circuits using solution-processed single-walled carbon nanotube transistors. Appl. Phys. Lett. 92, 253507 (2008)CrossRef
32.
go back to reference N. Imazu, T. Fujigaya, N. Nakashima, Fabrication of flexible transparent conductive films from long double-walled carbon nanotubes. Sci. Technol. Adv. Mater. 15, 025005 (2014)CrossRef N. Imazu, T. Fujigaya, N. Nakashima, Fabrication of flexible transparent conductive films from long double-walled carbon nanotubes. Sci. Technol. Adv. Mater. 15, 025005 (2014)CrossRef
33.
go back to reference L. Zhu, K. Moon, B. Bertram, D.W. Hess, C.P. Wong, in Assembling Carbon Nanotube Bundles Using Transfer Process for Fine-Pitch Electrical Interconnect Applications. Electronic Components and Technology Conference (2007) L. Zhu, K. Moon, B. Bertram, D.W. Hess, C.P. Wong, in Assembling Carbon Nanotube Bundles Using Transfer Process for Fine-Pitch Electrical Interconnect Applications. Electronic Components and Technology Conference (2007)
34.
go back to reference J.-T. Huang, P.-C. Chang, H.-W. Chao, P.-L. Hsu, in A Low-Temperature Fabrication Process Integrated Carbon Nanotubes-Based Sensor Device into CMOS IC. IEEE NANO (2009) J.-T. Huang, P.-C. Chang, H.-W. Chao, P.-L. Hsu, in A Low-Temperature Fabrication Process Integrated Carbon Nanotubes-Based Sensor Device into CMOS IC. IEEE NANO (2009)
35.
go back to reference K.E. Aasmundtveit, B.Q. Ta, L. Lin, E. Halvorsen, N. Hoivik, Direct integration of carbon nanotubes in Si microstructures. J. Micromech. Microeng. 22, 074006 (2012)CrossRef K.E. Aasmundtveit, B.Q. Ta, L. Lin, E. Halvorsen, N. Hoivik, Direct integration of carbon nanotubes in Si microstructures. J. Micromech. Microeng. 22, 074006 (2012)CrossRef
36.
go back to reference Y. Jiang, A. Kozinda, T. Chang, L. Lin, Flexible energy storage devices based on carbon nanotube forests with built-in metal electrodes. Sens. Actuators A 195, 224–230 (2013)CrossRef Y. Jiang, A. Kozinda, T. Chang, L. Lin, Flexible energy storage devices based on carbon nanotube forests with built-in metal electrodes. Sens. Actuators A 195, 224–230 (2013)CrossRef
37.
go back to reference C.-F. Hu, J.-Y. Wang, Y.-C. Liu, M.-H. Tsai, W. Fang, Development of 3D carbon nanotube interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application. Nanotechnology 24, 444006 (2013)CrossRef C.-F. Hu, J.-Y. Wang, Y.-C. Liu, M.-H. Tsai, W. Fang, Development of 3D carbon nanotube interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application. Nanotechnology 24, 444006 (2013)CrossRef
38.
go back to reference C. Stampfer, A. Jungen, C. Hierold, Fabrication of discrete carbon nanotube based nano-scaled force sensors (Sensors, IEEE, 2004), pp. 1056–1059 C. Stampfer, A. Jungen, C. Hierold, Fabrication of discrete carbon nanotube based nano-scaled force sensors (Sensors, IEEE, 2004), pp. 1056–1059
39.
go back to reference R.Z. Ma, J. Liang, B.Q. Wei, B. Zhang, C.L. Xu, D.H. Wu, Study of electrochemical capacitors utilizing carbon nanotube electrodes. J. Power Sour. 84, 126–129 (1999)CrossRef R.Z. Ma, J. Liang, B.Q. Wei, B. Zhang, C.L. Xu, D.H. Wu, Study of electrochemical capacitors utilizing carbon nanotube electrodes. J. Power Sour. 84, 126–129 (1999)CrossRef
40.
go back to reference T.K. Sasaki, A. Ikegami, M. Mochizuki, N. Aoki, Y. Ochiai, in Fabrication of Carbon Nanotube Electrodes for Bio-Nano-Electronic Devices. IPAP Conference Series 6 (2005), pp. 168–170 T.K. Sasaki, A. Ikegami, M. Mochizuki, N. Aoki, Y. Ochiai, in Fabrication of Carbon Nanotube Electrodes for Bio-Nano-Electronic Devices. IPAP Conference Series 6 (2005), pp. 168–170
41.
go back to reference A. Inaba, Y. Takei, T. Kan, K. Matsumoto, I. Shimoyama, Nanoprobe Electrodes Cut by Physical Stretch of Parylene-insulated Carbon Nanotube Bridges, Transducers’11 (Beijing, China, 2011) A. Inaba, Y. Takei, T. Kan, K. Matsumoto, I. Shimoyama, Nanoprobe Electrodes Cut by Physical Stretch of Parylene-insulated Carbon Nanotube Bridges, Transducers’11 (Beijing, China, 2011)
42.
go back to reference L. Yang, X. Li, Y. Xiong, X. Liu, X. Li, M. Wang, S. Yan, L.A.M. Alshahrani, P. Liu, C. Zhang, The fabrication of a Co (II) complex and multi-walled carbon nanotubes modified glass carbon electrode, and its application for the determination of dopamine. J. Electroanal. Chem. 731, 14–19 (2014)CrossRef L. Yang, X. Li, Y. Xiong, X. Liu, X. Li, M. Wang, S. Yan, L.A.M. Alshahrani, P. Liu, C. Zhang, The fabrication of a Co (II) complex and multi-walled carbon nanotubes modified glass carbon electrode, and its application for the determination of dopamine. J. Electroanal. Chem. 731, 14–19 (2014)CrossRef
43.
go back to reference E.C. Walter, K. Ng, M.P. Zach, R.M. Penner, F. Favier, Electronic devices from electrodeposited metal nanowires. Microelectron. Eng. 61–62, 555–561 (2002)CrossRef E.C. Walter, K. Ng, M.P. Zach, R.M. Penner, F. Favier, Electronic devices from electrodeposited metal nanowires. Microelectron. Eng. 61–62, 555–561 (2002)CrossRef
44.
go back to reference Y. Chai, Y. Wu, K. Takei, H.Y. Chen, S. Yu, P.C.H. Chan, A. Javey, H.S.P. Wong, In 2010 IEEE International Electron Devices Meeting (IEDM) (IEEE, San Francisco, CA, 2010), pp. 214–217 Y. Chai, Y. Wu, K. Takei, H.Y. Chen, S. Yu, P.C.H. Chan, A. Javey, H.S.P. Wong, In 2010 IEEE International Electron Devices Meeting (IEDM) (IEEE, San Francisco, CA, 2010), pp. 214–217
45.
go back to reference J. Huang, Q. Wan, Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9(12), 9903–9924 (2009)CrossRef J. Huang, Q. Wan, Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9(12), 9903–9924 (2009)CrossRef
46.
go back to reference S. Bibekananda, V.J. Babu, V. Subramanian, T.S.J. Natarajan, Preparation and characterization of electrospun fibers of poly(methyl methacrylate)-single walled carbon nanotube nanocomposites. J. Eng. Fibers Fabr. 3(4), 39–45 (2008) S. Bibekananda, V.J. Babu, V. Subramanian, T.S.J. Natarajan, Preparation and characterization of electrospun fibers of poly(methyl methacrylate)-single walled carbon nanotube nanocomposites. J. Eng. Fibers Fabr. 3(4), 39–45 (2008)
47.
go back to reference O.J. Schueller, S.T. Brittain, G.M. Whitesides, Fabrication of glassy carbon microstructures by pyrolysis of microfabricated polymeric precursors. Adv. Mater. 9(6), 477–480 (1997) O.J. Schueller, S.T. Brittain, G.M. Whitesides, Fabrication of glassy carbon microstructures by pyrolysis of microfabricated polymeric precursors. Adv. Mater. 9(6), 477–480 (1997)
48.
go back to reference A. Singh, J. Jayaram, M. Madou, S. Akbar, Pyrolysis of negative photoresists to fabricate carbon structures for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 149(3), E78–E83 (2002)CrossRef A. Singh, J. Jayaram, M. Madou, S. Akbar, Pyrolysis of negative photoresists to fabricate carbon structures for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 149(3), E78–E83 (2002)CrossRef
49.
go back to reference B.Y. Park, R. Zaouk, C. Wang, M.J. Madou, A case for fractal electrodes in electrochemical applications. J. Electrochem. Soc. 154(2), 1–5 (2007)CrossRef B.Y. Park, R. Zaouk, C. Wang, M.J. Madou, A case for fractal electrodes in electrochemical applications. J. Electrochem. Soc. 154(2), 1–5 (2007)CrossRef
50.
go back to reference J.-I. Heo, Y. Lim, M. Madou, H. Shin, in Scalable Suspended Carbon Nanowire Meshes as Ultrasensitive Electrochemical Sensing Platforms. IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) (2012), pp. 878–881 J.-I. Heo, Y. Lim, M. Madou, H. Shin, in Scalable Suspended Carbon Nanowire Meshes as Ultrasensitive Electrochemical Sensing Platforms. IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) (2012), pp. 878–881
51.
go back to reference G. Canton, in Development of Electro-Mechanical Spinning for Controlled Deposition of Carbon Nanofibers. PhD Thesis, UCI (2014) G. Canton, in Development of Electro-Mechanical Spinning for Controlled Deposition of Carbon Nanofibers. PhD Thesis, UCI (2014)
52.
go back to reference A. Greiner, J.H. Wendor, Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)CrossRef A. Greiner, J.H. Wendor, Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)CrossRef
53.
go back to reference P. Gibson, H. Schreuder-Gibson, D. Rivin, Electrospun fiber mats: transport properties. AIChE J. 45(1), 190–195 (1999)CrossRef P. Gibson, H. Schreuder-Gibson, D. Rivin, Electrospun fiber mats: transport properties. AIChE J. 45(1), 190–195 (1999)CrossRef
54.
go back to reference H.-J. Jin, S.V. Fridrikh, G.C. Rutledge, D.L. Kaplan, Electrospinning bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3(6), 1233–1239 (2002)CrossRef H.-J. Jin, S.V. Fridrikh, G.C. Rutledge, D.L. Kaplan, Electrospinning bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3(6), 1233–1239 (2002)CrossRef
55.
go back to reference Q.P. Pham, U. Sharma, A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12(5), 1197–1211 (2006)CrossRef Q.P. Pham, U. Sharma, A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12(5), 1197–1211 (2006)CrossRef
56.
go back to reference R. Murugan, S. Ramakrishna, Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng. 12(3), 435–447 (2006)CrossRef R. Murugan, S. Ramakrishna, Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng. 12(3), 435–447 (2006)CrossRef
57.
go back to reference S. Agarwal, J.H. Wendor, A. Greiner, Use of electrospinning technique for biomedical applications. Polymer 49(26), 5603–5621 (2008)CrossRef S. Agarwal, J.H. Wendor, A. Greiner, Use of electrospinning technique for biomedical applications. Polymer 49(26), 5603–5621 (2008)CrossRef
58.
go back to reference A. Babel, D. Li, Y. Xia, S.A. Jenekhe, Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors. Macromolecules 38(11), 4705–4711 (2005)CrossRef A. Babel, D. Li, Y. Xia, S.A. Jenekhe, Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors. Macromolecules 38(11), 4705–4711 (2005)CrossRef
59.
go back to reference N. Pinto, A. Johnson, A. MacDiarmid, C. Mueller, N. Theofylaktos, D. Robinson, F. Miranda, Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl. Phys. Lett. 83(20), 4244–4246 (2003)CrossRef N. Pinto, A. Johnson, A. MacDiarmid, C. Mueller, N. Theofylaktos, D. Robinson, F. Miranda, Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl. Phys. Lett. 83(20), 4244–4246 (2003)CrossRef
60.
go back to reference S. Sharma, M. Madou, A new approach to gas sensing with nanotechnology. Philos. Trans. R. Society A: Math. Phys. Eng. Sci. 370(1967), 2448–2473 (2012)CrossRef S. Sharma, M. Madou, A new approach to gas sensing with nanotechnology. Philos. Trans. R. Society A: Math. Phys. Eng. Sci. 370(1967), 2448–2473 (2012)CrossRef
61.
go back to reference H. Liu, J. Kameoka, D.A. Czaplewski, H. Craighead, Polymeric nanowire chemical sensor. Nano Lett. 4(4), 671–675 (2004)CrossRef H. Liu, J. Kameoka, D.A. Czaplewski, H. Craighead, Polymeric nanowire chemical sensor. Nano Lett. 4(4), 671–675 (2004)CrossRef
62.
go back to reference A.L. Andrady, Science and technology of polymer nanofibers (John Wiley & Sons, New York, NY, 2008)CrossRef A.L. Andrady, Science and technology of polymer nanofibers (John Wiley & Sons, New York, NY, 2008)CrossRef
63.
go back to reference M. Madou, V.H. Perez-Gonzalez, B. Pramanick, Carbon: The Next Silicon? Book 1—Fundamentals (Momentum Press, New York, 2016) M. Madou, V.H. Perez-Gonzalez, B. Pramanick, Carbon: The Next Silicon? Book 1—Fundamentals (Momentum Press, New York, 2016)
64.
go back to reference J.-S. Kim, D.H. Reneker, Polybenzimidazole nanofiber produced by electrospinning. Polym. Eng. Sci. 39(5), 849–854 (1999)CrossRef J.-S. Kim, D.H. Reneker, Polybenzimidazole nanofiber produced by electrospinning. Polym. Eng. Sci. 39(5), 849–854 (1999)CrossRef
65.
go back to reference D. Sun, C. Chang, S. Li, L. Lin, Near-field electrospinning. Nano Lett. 6(4), 839–842 (2006)CrossRef D. Sun, C. Chang, S. Li, L. Lin, Near-field electrospinning. Nano Lett. 6(4), 839–842 (2006)CrossRef
66.
go back to reference G. Zheng, G.W. Li, X. Wang, D. Wu, D. Sun, L. Lin, Precision deposition of a nanofibre by near-field electrospinning. J. Phys. D: Appl. Phys. 43(41), 415501 (2010) G. Zheng, G.W. Li, X. Wang, D. Wu, D. Sun, L. Lin, Precision deposition of a nanofibre by near-field electrospinning. J. Phys. D: Appl. Phys. 43(41), 415501 (2010)
67.
go back to reference C. Chang, K. Limkrailassiri, L. Lin, Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl. Phys. Lett. 93(12), 123111 (2008)CrossRef C. Chang, K. Limkrailassiri, L. Lin, Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl. Phys. Lett. 93(12), 123111 (2008)CrossRef
68.
go back to reference C.S. Sharma, H. Katepalli, A. Sharma, M. Madou, Fabrication and electrical conductivity of suspended carbon nanofiber arrays. Carbon 49(5), 173–1727 (2011)CrossRef C.S. Sharma, H. Katepalli, A. Sharma, M. Madou, Fabrication and electrical conductivity of suspended carbon nanofiber arrays. Carbon 49(5), 173–1727 (2011)CrossRef
69.
go back to reference J.-I. Heo, Y. Lim, M. Madou, H. Shin, in Scalable Suspended Carbon Nanowire Meshes as Ultrasensitive Electrochemical Sensing Platforms. In IEEE 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) (2012), pp. 878–81 J.-I. Heo, Y. Lim, M. Madou, H. Shin, in Scalable Suspended Carbon Nanowire Meshes as Ultrasensitive Electrochemical Sensing Platforms. In IEEE 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) (2012), pp. 878–81
70.
go back to reference Y. Lim, J. Heo, M.J. Madou, H. Shin, Development of Suspended 2D Carbon Nanostructures: Nanowires to Nanomeshes. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2013) (2013) Y. Lim, J. Heo, M.J. Madou, H. Shin, Development of Suspended 2D Carbon Nanostructures: Nanowires to Nanomeshes. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2013) (2013)
71.
go back to reference J. Heo, Y. Lim, H. Shin, in A Stacked Electrode Set Including Suspended Carbon Nanomeshes and Planar Carbon Pads for Electrochemical/Bio Sensor Applications. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2013) (2013) J. Heo, Y. Lim, H. Shin, in A Stacked Electrode Set Including Suspended Carbon Nanomeshes and Planar Carbon Pads for Electrochemical/Bio Sensor Applications. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2013) (2013)
72.
go back to reference S. Sharma, in Microstructural Tuning of Glassy Carbon for Electrical and Electrochemical Sensor Applications. PhD Thesis, UCI (2013) S. Sharma, in Microstructural Tuning of Glassy Carbon for Electrical and Electrochemical Sensor Applications. PhD Thesis, UCI (2013)
Metadata
Title
Recent Trends in the Processing and Applications of Carbon Nanotubes and C-MEMS-Based Carbon Nanowires
Authors
Bidhan Pramanick
Merin Mary Meyn
Kavita Shrivastava
Sergio O. Martinez-Chapa
Marc J. Madou
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6214-8_4

Premium Partners