Skip to main content
Top

2011 | OriginalPaper | Chapter

Recognition of Carbon Nanotubes by the Human Innate Immune System

Authors : Malgorzata J. Rybak-Smith, Kirsten M. Pondman, Emmanuel Flahaut, Carolina Salvador-Morales, Robert B. Sim

Published in: Carbon Nanotubes for Biomedical Applications

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A major function of the human innate immune system is to recognize non-self: i.e., invading microorganisms or altered, damaged self macromolecules and cells. Various components of the human immune system recognize foreign synthetic materials, including carbon nanotubes (CNTs). The complement system proteins in blood, and the collectins, SP-A and SP-D in the lungs bind to carbon nanotubes, in competition with other plasma proteins, and may influence their subsequent adhesion to and uptake by cells and their localization in the body. Modification of the surface chemistry of carbon nanotubes alters their binding to complement proteins and collectins, and provides information on the mechanism by which binding of these proteins occurs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kishore, U. (ed.): Target Pattern Recognition in Innate Immunity. Springer, Landes Bioscience, Austin (2009) Kishore, U. (ed.): Target Pattern Recognition in Innate Immunity. Springer, Landes Bioscience, Austin (2009)
2.
go back to reference Salvador-Morales, C., Green, M.L.H., Sim, R.B.: Interaction between carbon nanotubes and biomolecules. In: Basiuk, V.A., Basiuk, E.V. (eds.) Chemistry of Carbon Nanotubes. American Scientific Publishers, Valencia (2008) Salvador-Morales, C., Green, M.L.H., Sim, R.B.: Interaction between carbon nanotubes and biomolecules. In: Basiuk, V.A., Basiuk, E.V. (eds.) Chemistry of Carbon Nanotubes. American Scientific Publishers, Valencia (2008)
3.
go back to reference Salvador-Morales, C., Flahaut, E., Sim, E., et al.: Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 43, 193–201 (2006)CrossRef Salvador-Morales, C., Flahaut, E., Sim, E., et al.: Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 43, 193–201 (2006)CrossRef
4.
go back to reference Kang, Y.H., Tan, L.A., Carroll, M.V., et al.: Target pattern recognition by complement proteins of the classical and alternative pathways. Adv. Exp. Med. Biol. 653, 117–128 (2009)CrossRef Kang, Y.H., Tan, L.A., Carroll, M.V., et al.: Target pattern recognition by complement proteins of the classical and alternative pathways. Adv. Exp. Med. Biol. 653, 117–128 (2009)CrossRef
5.
go back to reference Mayilyan, K.R., Weinberger, D.R., Sim, R.B.: The complement system in schizophrenia. Drug News Perspect. 21, 200–210 (2008)CrossRef Mayilyan, K.R., Weinberger, D.R., Sim, R.B.: The complement system in schizophrenia. Drug News Perspect. 21, 200–210 (2008)CrossRef
6.
go back to reference Mayilyan, K.R., Kang, Y.H., Dodds, A.W.: The complement system in innate immunity. In: Heine, H., et al. (eds.) Innate Immunity of Plants, Animals and Humans. Springer, Heidelberg (2008) Mayilyan, K.R., Kang, Y.H., Dodds, A.W.: The complement system in innate immunity. In: Heine, H., et al. (eds.) Innate Immunity of Plants, Animals and Humans. Springer, Heidelberg (2008)
7.
go back to reference Sim, R.B., Tsiftsoglou, S.A.: Proteases of the complement system. Biochem. Soc. T 32, 21–27 (2004)CrossRef Sim, R.B., Tsiftsoglou, S.A.: Proteases of the complement system. Biochem. Soc. T 32, 21–27 (2004)CrossRef
8.
go back to reference Gál, P., Dobó, J., Závodszky, P., et al.: Early complement proteases: C1r, C1s and MASPs. A structural insight into activation and functions. Mol. Immunol. 46, 2745–2752 (2009)CrossRef Gál, P., Dobó, J., Závodszky, P., et al.: Early complement proteases: C1r, C1s and MASPs. A structural insight into activation and functions. Mol. Immunol. 46, 2745–2752 (2009)CrossRef
9.
go back to reference Wallis, R., Krarup, A., Girija, U.V.: The structure and function of ficolins, MBLs and MASPs. In: Reid, K.B.M., Sim, R.B. (eds.) Molecular Aspects of Innate and Adaptive Immunity. Royal Society of Chemistry, Cambridge (2008) Wallis, R., Krarup, A., Girija, U.V.: The structure and function of ficolins, MBLs and MASPs. In: Reid, K.B.M., Sim, R.B. (eds.) Molecular Aspects of Innate and Adaptive Immunity. Royal Society of Chemistry, Cambridge (2008)
10.
go back to reference Krarup, A., Mitchell, D.A., Sim, R.B.: Recognition of acetylated oligosaccharides by human L-ficolin. Immunol. Lett. 118, 152–156 (2008)CrossRef Krarup, A., Mitchell, D.A., Sim, R.B.: Recognition of acetylated oligosaccharides by human L-ficolin. Immunol. Lett. 118, 152–156 (2008)CrossRef
11.
go back to reference Carroll, M.V., Lack, N., Sim, E., et al.: Multiple routes of complement activation by Mycobacterium bovis BCG. Mol. Immunol. 46, 3367–3378 (2009)CrossRef Carroll, M.V., Lack, N., Sim, E., et al.: Multiple routes of complement activation by Mycobacterium bovis BCG. Mol. Immunol. 46, 3367–3378 (2009)CrossRef
12.
go back to reference Cestari, I.D., Krarup, A., Sim, R.B., et al.: Role of early lectin pathway activation in the complement-mediated killing of Trypanosoma cruzi. Mol. Immunol. 47, 426–437 (2009)CrossRef Cestari, I.D., Krarup, A., Sim, R.B., et al.: Role of early lectin pathway activation in the complement-mediated killing of Trypanosoma cruzi. Mol. Immunol. 47, 426–437 (2009)CrossRef
13.
go back to reference Phillips, A.E., Toth, J., Dodds, A.W., et al.: Analogous interactions in initiating complexes of the classical and lectin pathways of complement. J. Immunol. 182, 7708–7717 (2009)CrossRef Phillips, A.E., Toth, J., Dodds, A.W., et al.: Analogous interactions in initiating complexes of the classical and lectin pathways of complement. J. Immunol. 182, 7708–7717 (2009)CrossRef
14.
go back to reference Ghai, R., Waters, P., Roumenina, L.T., et al.: C1q and its growing family. Immunobiology 212, 253–266 (2007)CrossRef Ghai, R., Waters, P., Roumenina, L.T., et al.: C1q and its growing family. Immunobiology 212, 253–266 (2007)CrossRef
15.
go back to reference Kishore, U., Gaboriaud, C., Waters, P., et al.: C1q and tumor necrosis factor superfamily: modularity and versatility. Trends Immunol. 25, 551–561 (2004)CrossRef Kishore, U., Gaboriaud, C., Waters, P., et al.: C1q and tumor necrosis factor superfamily: modularity and versatility. Trends Immunol. 25, 551–561 (2004)CrossRef
16.
go back to reference Matsushita, M.: Ficolins: complement-activating lectins involved in innate immunity. J. Innate Immun. 2, 24–32 (2010)CrossRef Matsushita, M.: Ficolins: complement-activating lectins involved in innate immunity. J. Innate Immun. 2, 24–32 (2010)CrossRef
17.
go back to reference Xu, W., Berger, S.P., Trouw, L.A., et al.: Properdin binds to late apoptotic and necrotic cells independently of C3b and regulates alternative pathway complement activation. J. Immunol. 180, 7613–7621 (2008)CrossRef Xu, W., Berger, S.P., Trouw, L.A., et al.: Properdin binds to late apoptotic and necrotic cells independently of C3b and regulates alternative pathway complement activation. J. Immunol. 180, 7613–7621 (2008)CrossRef
18.
go back to reference Nolan, K.F., Kaluz, S., Higgins, J.M.G., et al.: Characterization of the human properdin gene. Biochem. J. 287, 291–297 (1992)CrossRef Nolan, K.F., Kaluz, S., Higgins, J.M.G., et al.: Characterization of the human properdin gene. Biochem. J. 287, 291–297 (1992)CrossRef
19.
go back to reference Sim, R.B., Clark, H., Hajela, K., et al.: Collectins and host defence. Novartis Found. Symp. 279, 170–181 (2006) Sim, R.B., Clark, H., Hajela, K., et al.: Collectins and host defence. Novartis Found. Symp. 279, 170–181 (2006)
20.
go back to reference Hickling, T.P., Clark, H., Malhotra, R., et al.: Collectins and their role in lung immunity. J. Leukocyte Biol. 75, 27–33 (2004)CrossRef Hickling, T.P., Clark, H., Malhotra, R., et al.: Collectins and their role in lung immunity. J. Leukocyte Biol. 75, 27–33 (2004)CrossRef
21.
go back to reference Carlisle, R.C., Di, Y., Cerny, A.M., et al.: Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1. Blood 113, 1909–1918 (2009)CrossRef Carlisle, R.C., Di, Y., Cerny, A.M., et al.: Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1. Blood 113, 1909–1918 (2009)CrossRef
22.
go back to reference Sim, R.B., Twose, T.M., Paterson, D.S., et al.: The covalent-binding reaction of complement component C3. Biochem. J. 193, 115–127 (1981)CrossRef Sim, R.B., Twose, T.M., Paterson, D.S., et al.: The covalent-binding reaction of complement component C3. Biochem. J. 193, 115–127 (1981)CrossRef
23.
go back to reference Vandivier, R.W., Ogden, C.A., Fadok, V.A., et al.: Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J. Immunol. 169, 3978–3986 (2002)CrossRef Vandivier, R.W., Ogden, C.A., Fadok, V.A., et al.: Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J. Immunol. 169, 3978–3986 (2002)CrossRef
24.
go back to reference Sim, R.B., Moestrup, S.K., Stuart, G.R., et al.: Interaction of Clq and the collectins with the potential receptors calreticulin (cC1qR/collectin receptor) and megalin. Immunobiology 199, 208–224 (1998)CrossRef Sim, R.B., Moestrup, S.K., Stuart, G.R., et al.: Interaction of Clq and the collectins with the potential receptors calreticulin (cC1qR/collectin receptor) and megalin. Immunobiology 199, 208–224 (1998)CrossRef
25.
go back to reference Basiuk, V.A., Salvador-Morales, C., Basiuk, E.V., et al.: ‘Green’ derivatization of carbon nanotubes with Nylon 6 and l-alanine. J. Mater. Chem. 16, 4420–4426 (2006)CrossRef Basiuk, V.A., Salvador-Morales, C., Basiuk, E.V., et al.: ‘Green’ derivatization of carbon nanotubes with Nylon 6 and l-alanine. J. Mater. Chem. 16, 4420–4426 (2006)CrossRef
26.
go back to reference Salvador-Morales, C., Basiuk, E.V., Basiuk, V.A., et al.: Effects of covalent functionalization on the biocompatibility characteristics of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 8, 2347–2356 (2008)CrossRef Salvador-Morales, C., Basiuk, E.V., Basiuk, V.A., et al.: Effects of covalent functionalization on the biocompatibility characteristics of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 8, 2347–2356 (2008)CrossRef
27.
go back to reference Roumenina, L., Bureeva, S., Kantardjiev, A., et al.: Complement C1q-target proteins recognition is inhibited by electric moment effectors. J. Mol. Recogn. 20, 405–415 (2007)CrossRef Roumenina, L., Bureeva, S., Kantardjiev, A., et al.: Complement C1q-target proteins recognition is inhibited by electric moment effectors. J. Mol. Recogn. 20, 405–415 (2007)CrossRef
28.
go back to reference Hamad, I., Hunter, A.C., Rutt, K.J., et al.: Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. Mol. Immunol. 45, 3797–3803 (2008)CrossRef Hamad, I., Hunter, A.C., Rutt, K.J., et al.: Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. Mol. Immunol. 45, 3797–3803 (2008)CrossRef
29.
go back to reference Hamad, I., Hunter, A.C., Szebeni, J., et al.: Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol. Immunol. 46, 225–232 (2008)CrossRef Hamad, I., Hunter, A.C., Szebeni, J., et al.: Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol. Immunol. 46, 225–232 (2008)CrossRef
30.
go back to reference Salvador-Morales, C., Townsend, P., Flahaut, E., et al.: Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms. Carbon 45, 607–617 (2007)CrossRef Salvador-Morales, C., Townsend, P., Flahaut, E., et al.: Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms. Carbon 45, 607–617 (2007)CrossRef
31.
go back to reference Salvador-Morales, C: Study of the interaction between immune system proteins and carbon nanotubes. PhD Thesis. University of Oxford, Oxford, UK (2006) Salvador-Morales, C: Study of the interaction between immune system proteins and carbon nanotubes. PhD Thesis. University of Oxford, Oxford, UK (2006)
32.
go back to reference Jin, H., Heller, D.A., Sharma, R., et al.: Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3, 149–158 (2009)CrossRef Jin, H., Heller, D.A., Sharma, R., et al.: Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3, 149–158 (2009)CrossRef
33.
go back to reference Porter, A.E., Gass, M., Bendall, J.S., et al.: Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 3, 1485–1492 (2009)CrossRef Porter, A.E., Gass, M., Bendall, J.S., et al.: Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 3, 1485–1492 (2009)CrossRef
34.
go back to reference Kam, N.W.S., Jessop, T.C., Wender, P.A., et al.: Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850–6851 (2004)CrossRef Kam, N.W.S., Jessop, T.C., Wender, P.A., et al.: Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850–6851 (2004)CrossRef
35.
36.
go back to reference Magrez, A., Kasas, S., Salicio, V., et al.: Cellular toxicity of carbon-based nanomaterials. Nano Lett. 6, 1121–1125 (2006)CrossRef Magrez, A., Kasas, S., Salicio, V., et al.: Cellular toxicity of carbon-based nanomaterials. Nano Lett. 6, 1121–1125 (2006)CrossRef
37.
go back to reference Kostarelos, K., Lacerda, L., Pastorin, G., et al.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2, 108–113 (2007)CrossRef Kostarelos, K., Lacerda, L., Pastorin, G., et al.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2, 108–113 (2007)CrossRef
38.
go back to reference Cui, D.X., Tian, F.R., Ozkan, C.S., et al.: Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155, 73–85 (2005)CrossRef Cui, D.X., Tian, F.R., Ozkan, C.S., et al.: Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155, 73–85 (2005)CrossRef
39.
go back to reference Shvedova, A.A., Castranova, V., Kisin, E.R., et al.: Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Envrion. Heal A 66, 1909–1926 (2003)CrossRef Shvedova, A.A., Castranova, V., Kisin, E.R., et al.: Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Envrion. Heal A 66, 1909–1926 (2003)CrossRef
40.
go back to reference Jia, G., Wang, H.F., Yan, L., et al.: Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39, 1378–1383 (2005)CrossRef Jia, G., Wang, H.F., Yan, L., et al.: Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39, 1378–1383 (2005)CrossRef
41.
go back to reference Belyanskaya, L., Weigel, S., Hirsch, C., et al.: Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology 30, 702–711 (2009)CrossRef Belyanskaya, L., Weigel, S., Hirsch, C., et al.: Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology 30, 702–711 (2009)CrossRef
42.
go back to reference Shvedova, A.A., Kisin, E.R., Porter, D., et al.: Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacol. Therapeut. 121, 192–204 (2009)CrossRef Shvedova, A.A., Kisin, E.R., Porter, D., et al.: Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacol. Therapeut. 121, 192–204 (2009)CrossRef
43.
go back to reference Watari, F., Takashi, N., Yokoyama, A., et al.: Material nanosizing effect on living organisms: non-specific, biointeractive, physical size effects. J. Roy. Soc. Interface 6, S371–S388 (2009)CrossRef Watari, F., Takashi, N., Yokoyama, A., et al.: Material nanosizing effect on living organisms: non-specific, biointeractive, physical size effects. J. Roy. Soc. Interface 6, S371–S388 (2009)CrossRef
44.
go back to reference Zeineldin, R., Al-Haik, M., Hudson, L.G.: Role of polyethylene glycol integrity in specific receptor targeting of carbon nanotubes to cancer cells. Nano Lett. 9, 751–757 (2009)CrossRef Zeineldin, R., Al-Haik, M., Hudson, L.G.: Role of polyethylene glycol integrity in specific receptor targeting of carbon nanotubes to cancer cells. Nano Lett. 9, 751–757 (2009)CrossRef
45.
go back to reference Kang, B., Yu, D., Chang, S.: Intracellular uptake, trafficking and subcellular distribution of folate conjugated single walled carbon nanotubes within living cells. Nanotechnology (2008). doi: 10.1088/0957-4484/19/37/375103 Kang, B., Yu, D., Chang, S.: Intracellular uptake, trafficking and subcellular distribution of folate conjugated single walled carbon nanotubes within living cells. Nanotechnology (2008). doi: 10.​1088/​0957-4484/​19/​37/​375103
46.
go back to reference Chen, X., Lee, G.S., Zettl, A., et al.: Biomimetic engineering of carbon nanotubes by using cell surface mucin mimics. Angew Chem. Int. Edit. 43, 6111–6116 (2004)CrossRef Chen, X., Lee, G.S., Zettl, A., et al.: Biomimetic engineering of carbon nanotubes by using cell surface mucin mimics. Angew Chem. Int. Edit. 43, 6111–6116 (2004)CrossRef
47.
48.
go back to reference Kam, N.W.S., Dai, H.J.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127, 6021–6026 (2005)CrossRef Kam, N.W.S., Dai, H.J.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127, 6021–6026 (2005)CrossRef
49.
go back to reference Cheng, C., Muller, K.H., Koziol, K.K.K., et al.: Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30, 4152–4160 (2009)CrossRef Cheng, C., Muller, K.H., Koziol, K.K.K., et al.: Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30, 4152–4160 (2009)CrossRef
50.
go back to reference Kim, J.Y., Khang, D., Lee, J.E.: Decreased macrophage density on carbon nanotube patterns on polycarbonate urethane. Wiley InterScience, New York (2007). doi:10.1002/jbm.a.31799 Kim, J.Y., Khang, D., Lee, J.E.: Decreased macrophage density on carbon nanotube patterns on polycarbonate urethane. Wiley InterScience, New York (2007). doi:10.​1002/​jbm.​a.​31799
51.
go back to reference Harrison, B.S., Atala, A.: Carbon nanotube applications for tissue engineering. Biomaterials 28, 344–353 (2007)CrossRef Harrison, B.S., Atala, A.: Carbon nanotube applications for tissue engineering. Biomaterials 28, 344–353 (2007)CrossRef
52.
go back to reference Cai, D., Blair, D., Dufort, F.J., et al.: Interaction between carbon nanotubes and mammalian cells: characterization by flow cytometry and application. Nanotechnology 19, 1–10 (2008) Cai, D., Blair, D., Dufort, F.J., et al.: Interaction between carbon nanotubes and mammalian cells: characterization by flow cytometry and application. Nanotechnology 19, 1–10 (2008)
53.
go back to reference Dobrovolskaia, M.A., McNeil, S.E.: Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2, 469–478 (2007)CrossRef Dobrovolskaia, M.A., McNeil, S.E.: Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2, 469–478 (2007)CrossRef
54.
go back to reference Yu, Y.M., Zhang, Q., Mu, Q.X., et al.: Exploring the immunotoxicity of carbon nanotubes. Nanoscale Res. Lett. 3, 271–277 (2008)CrossRef Yu, Y.M., Zhang, Q., Mu, Q.X., et al.: Exploring the immunotoxicity of carbon nanotubes. Nanoscale Res. Lett. 3, 271–277 (2008)CrossRef
55.
go back to reference Müller, L., Riediker, M., Wick, P., et al.: Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J. Roy. Soc. Interface (2009). doi:10.1098/rsif.2009.0161.focus Müller, L., Riediker, M., Wick, P., et al.: Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J. Roy. Soc. Interface (2009). doi:10.​1098/​rsif.​2009.​0161.​focus
56.
go back to reference Simon, A., Reynaud, C., Mayne, M., et al.: Cytotoxicity of Metal Oxide Nanoparticles and Multiwalled Carbon Nanotubes to Lung, Kidney and Liver Cells. John Libbey Eurotext, France (2008) Simon, A., Reynaud, C., Mayne, M., et al.: Cytotoxicity of Metal Oxide Nanoparticles and Multiwalled Carbon Nanotubes to Lung, Kidney and Liver Cells. John Libbey Eurotext, France (2008)
57.
go back to reference Stern, S.T., McNeil, S.E.: Nanotechnology safety concerns revisited. Toxicol. Sci. 101, 4–21 (2008)CrossRef Stern, S.T., McNeil, S.E.: Nanotechnology safety concerns revisited. Toxicol. Sci. 101, 4–21 (2008)CrossRef
58.
go back to reference Donaldson, K., Aitken, R., Tran, L., et al.: Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 92, 5–22 (2006)CrossRef Donaldson, K., Aitken, R., Tran, L., et al.: Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 92, 5–22 (2006)CrossRef
59.
go back to reference Helland, A., Wick, P., Koehler, A., et al.: Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect. 115, 1125–1131 (2007)CrossRef Helland, A., Wick, P., Koehler, A., et al.: Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect. 115, 1125–1131 (2007)CrossRef
60.
go back to reference De Jong, W.H., Borm, P.J.A.: Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3, 133–149 (2008)CrossRef De Jong, W.H., Borm, P.J.A.: Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3, 133–149 (2008)CrossRef
61.
go back to reference Yang, W., Peters, J.I., Williams, R.O.: Inhaled nanoparticles—a current review. Int. J. Pharm. 356, 239–247 (2008)CrossRef Yang, W., Peters, J.I., Williams, R.O.: Inhaled nanoparticles—a current review. Int. J. Pharm. 356, 239–247 (2008)CrossRef
62.
go back to reference Card, J.W., Zeldin, D.C., Bonner, J.C., et al.: Pulmonary applications and toxicity of engineered nanoparticles. Am. J. Physiol. Lung C 295, L400–L411 (2008)CrossRef Card, J.W., Zeldin, D.C., Bonner, J.C., et al.: Pulmonary applications and toxicity of engineered nanoparticles. Am. J. Physiol. Lung C 295, L400–L411 (2008)CrossRef
64.
go back to reference Han, S.G., Andrews, R., Gairola, C.G.: Acute pulmonary effects of combined exposure to carbon nanotubes and ozone in mice. Inhal. Toxicol. 20, 391–398 (2008)CrossRef Han, S.G., Andrews, R., Gairola, C.G.: Acute pulmonary effects of combined exposure to carbon nanotubes and ozone in mice. Inhal. Toxicol. 20, 391–398 (2008)CrossRef
65.
go back to reference Han, S.G., Andrews, R., Gairola, C.G.: Acute pulmonary response of mice to multi-wall carbon nanotubes. Inhal. Toxicol. 22, 340–347 (2010)CrossRef Han, S.G., Andrews, R., Gairola, C.G.: Acute pulmonary response of mice to multi-wall carbon nanotubes. Inhal. Toxicol. 22, 340–347 (2010)CrossRef
66.
go back to reference Mitchell, L.A., Gao, J., Wal, R.V., et al.: Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol. Sci. 100, 203–214 (2007)CrossRef Mitchell, L.A., Gao, J., Wal, R.V., et al.: Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol. Sci. 100, 203–214 (2007)CrossRef
67.
go back to reference Mitchell, L.A., Lauer, F.T., Burchiel, S.W., et al.: Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat. Nanotechnol. 4, 451–456 (2009)CrossRef Mitchell, L.A., Lauer, F.T., Burchiel, S.W., et al.: Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat. Nanotechnol. 4, 451–456 (2009)CrossRef
68.
go back to reference Kostarelos, K.: The long and short of carbon nanotube toxicity. Nat. Biotechnol. 26, 774–776 (2008)CrossRef Kostarelos, K.: The long and short of carbon nanotube toxicity. Nat. Biotechnol. 26, 774–776 (2008)CrossRef
69.
go back to reference Chou, C.C., Hsiao, H.Y., Hong, Q.S., et al.: Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett. 8, 437–445 (2008)CrossRef Chou, C.C., Hsiao, H.Y., Hong, Q.S., et al.: Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett. 8, 437–445 (2008)CrossRef
70.
go back to reference Warheit, D.B.: What is currently known about the health risks related to carbon nanotube exposures? Carbon 44, 1064–1069 (2006)CrossRef Warheit, D.B.: What is currently known about the health risks related to carbon nanotube exposures? Carbon 44, 1064–1069 (2006)CrossRef
71.
go back to reference Poland, C.A., Duffin, R., Kinloch, I., et al.: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423–428 (2008)CrossRef Poland, C.A., Duffin, R., Kinloch, I., et al.: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423–428 (2008)CrossRef
72.
go back to reference Jacobsen, N.R., Moller, P., Jensen, K.A, et al.: Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE(−/−) mice. Part Fibre Toxicol. (2009). doi:10.1186/1743-8977-6-2 Jacobsen, N.R., Moller, P., Jensen, K.A, et al.: Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE(−/−) mice. Part Fibre Toxicol. (2009). doi:10.​1186/​1743-8977-6-2
73.
go back to reference Elgrabli, D., Floriani, M., Abella-Gallart, S, et al.: Biodistribution and clearance of instilled carbon nanotubes in rat lung. Part Fibre Toxicol. (2008). doi:10.1186/1743-8977-5-20 Elgrabli, D., Floriani, M., Abella-Gallart, S, et al.: Biodistribution and clearance of instilled carbon nanotubes in rat lung. Part Fibre Toxicol. (2008). doi:10.​1186/​1743-8977-5-20
74.
go back to reference Li, J.G., Li, W.X., Xu, J.Y., et al.: Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ. Toxicol. 22, 415–421 (2007)CrossRef Li, J.G., Li, W.X., Xu, J.Y., et al.: Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ. Toxicol. 22, 415–421 (2007)CrossRef
75.
go back to reference Warheit, D.B., Laurence, B.R., Reed, K.L., et al.: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77, 117–125 (2004)CrossRef Warheit, D.B., Laurence, B.R., Reed, K.L., et al.: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77, 117–125 (2004)CrossRef
76.
go back to reference Lam, C.W., James, J.T., McCluskey, R., et al.: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126–134 (2004)CrossRef Lam, C.W., James, J.T., McCluskey, R., et al.: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126–134 (2004)CrossRef
77.
go back to reference Elder, A.: How do nanotubes suppress T cells? Nat. Nanotechnol. 4, 409–410 (2009)CrossRef Elder, A.: How do nanotubes suppress T cells? Nat. Nanotechnol. 4, 409–410 (2009)CrossRef
78.
go back to reference Huczko, A., Lange, H., Bystrzejewski, M., et al.: Pulmonary toxicity of 1-D nanocarbon materials. Fullerenes Nanotubes Carbon Nanostruct. 13, 141–145 (2005)CrossRef Huczko, A., Lange, H., Bystrzejewski, M., et al.: Pulmonary toxicity of 1-D nanocarbon materials. Fullerenes Nanotubes Carbon Nanostruct. 13, 141–145 (2005)CrossRef
79.
go back to reference Qu, G.B., Bai, Y.H., Zhang, Y., et al.: The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon 47, 2060–2069 (2009)CrossRef Qu, G.B., Bai, Y.H., Zhang, Y., et al.: The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon 47, 2060–2069 (2009)CrossRef
80.
go back to reference Pulskamp, K., Diabate, S., Krug, H.F.: Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 168, 58–74 (2007)CrossRef Pulskamp, K., Diabate, S., Krug, H.F.: Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 168, 58–74 (2007)CrossRef
81.
go back to reference Fenoglio, I., Tomatis, M., Lison, D., et al.: Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radic. Biol. Med. 40, 1227–1233 (2006)CrossRef Fenoglio, I., Tomatis, M., Lison, D., et al.: Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radic. Biol. Med. 40, 1227–1233 (2006)CrossRef
82.
go back to reference Shvedova, A.A., Kisin, E.R., Mercer, R., et al.: Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung C 289, L698–L708 (2005)CrossRef Shvedova, A.A., Kisin, E.R., Mercer, R., et al.: Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung C 289, L698–L708 (2005)CrossRef
83.
go back to reference Pulskamp, K., Worle-Knirsch, J.M., Hennrich, F., et al.: Human lung epithelial cells show biphasic oxidative burst after single-walled carbon nanotube contact. Carbon 45, 2241–2249 (2007)CrossRef Pulskamp, K., Worle-Knirsch, J.M., Hennrich, F., et al.: Human lung epithelial cells show biphasic oxidative burst after single-walled carbon nanotube contact. Carbon 45, 2241–2249 (2007)CrossRef
84.
go back to reference Brown, D.M., Kinloch, I.A., Bangert, U., et al.: An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 45, 1743–1756 (2007)CrossRef Brown, D.M., Kinloch, I.A., Bangert, U., et al.: An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 45, 1743–1756 (2007)CrossRef
85.
go back to reference Shvedova, A.A., Kisin, E.R., Murray, A.R., et al.: Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol. Appl. Pharm. 231, 235–240 (2008)CrossRef Shvedova, A.A., Kisin, E.R., Murray, A.R., et al.: Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol. Appl. Pharm. 231, 235–240 (2008)CrossRef
86.
go back to reference Murray, A.R., Kisin, E., Leonard, S.S., et al.: Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257, 161–171 (2009)CrossRef Murray, A.R., Kisin, E., Leonard, S.S., et al.: Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257, 161–171 (2009)CrossRef
87.
go back to reference Charlier, J.C., Ebbesen, T.W., Lambin, P.: Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys. Rev. B 53, 11108–11113 (1996)CrossRef Charlier, J.C., Ebbesen, T.W., Lambin, P.: Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys. Rev. B 53, 11108–11113 (1996)CrossRef
88.
go back to reference Charlier, J.C.: Defects in carbon nanotubes. Acc. Chem. Res. 35, 1063–1069 (2002)CrossRef Charlier, J.C.: Defects in carbon nanotubes. Acc. Chem. Res. 35, 1063–1069 (2002)CrossRef
89.
go back to reference Lambin, P.H., Lucas, A.A., Charlier, J.C., et al.: Electronic properties of carbon nanotubes containing defects. J. Phys. Chem. Sol. 58, 1833–1837 (1997)CrossRef Lambin, P.H., Lucas, A.A., Charlier, J.C., et al.: Electronic properties of carbon nanotubes containing defects. J. Phys. Chem. Sol. 58, 1833–1837 (1997)CrossRef
90.
91.
go back to reference Muller, J., Huaux, F., Fonseca, A., et al.: Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem. Res. Toxicol. 21, 1698–1705 (2008)CrossRef Muller, J., Huaux, F., Fonseca, A., et al.: Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem. Res. Toxicol. 21, 1698–1705 (2008)CrossRef
92.
go back to reference Fenoglio, I., Greco, G., Tornatis, M., et al.: Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem. Res. Toxicol. 21, 1690–1697 (2008)CrossRef Fenoglio, I., Greco, G., Tornatis, M., et al.: Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem. Res. Toxicol. 21, 1690–1697 (2008)CrossRef
93.
go back to reference Medina, C., Santos-Martinez, M.J., Radomski, A., et al.: Nanoparticles: pharmacological and toxicological significance. Br. J. Pharmacol. 150, 552–558 (2007)CrossRef Medina, C., Santos-Martinez, M.J., Radomski, A., et al.: Nanoparticles: pharmacological and toxicological significance. Br. J. Pharmacol. 150, 552–558 (2007)CrossRef
94.
go back to reference Schrand, A.M., Dai, L., Schlager, J.J., et al.: Differential biocompatibility of carbon nanotubes and nanodiamonds. Diam. Relat. Mater. 16, 2118–2123 (2007)CrossRef Schrand, A.M., Dai, L., Schlager, J.J., et al.: Differential biocompatibility of carbon nanotubes and nanodiamonds. Diam. Relat. Mater. 16, 2118–2123 (2007)CrossRef
95.
go back to reference Gessner, A., Waicz, R., Lieske, A., et al.: Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int. J. Pharm. 196, 245–249 (2000)CrossRef Gessner, A., Waicz, R., Lieske, A., et al.: Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int. J. Pharm. 196, 245–249 (2000)CrossRef
96.
go back to reference Lück, M., Paulke, B.R., Schröder, W., et al.: Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J. Biomed. Mater. Res. 39, 478–485 (1998)CrossRef Lück, M., Paulke, B.R., Schröder, W., et al.: Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J. Biomed. Mater. Res. 39, 478–485 (1998)CrossRef
97.
go back to reference Chłopek, J., Czajkowska, B., Szaraniec, B., et al.: In vitro studies of carbon nanotubes biocompatibility. Carbon 44, 1106–1111 (2006)CrossRef Chłopek, J., Czajkowska, B., Szaraniec, B., et al.: In vitro studies of carbon nanotubes biocompatibility. Carbon 44, 1106–1111 (2006)CrossRef
98.
go back to reference Naguib, N.N., Mueller, Y.M., Bojczuk, P.M., et al.: Effect of carbon nanofibre structure on the binding of antibodies. Nanotechnology 16, 567–571 (2005)CrossRef Naguib, N.N., Mueller, Y.M., Bojczuk, P.M., et al.: Effect of carbon nanofibre structure on the binding of antibodies. Nanotechnology 16, 567–571 (2005)CrossRef
99.
go back to reference Smart, S.K., Cassady, A.I., Lu, G.Q., et al.: The biocompatibility of carbon nanotubes. Carbon 44, 1034–1047 (2006)CrossRef Smart, S.K., Cassady, A.I., Lu, G.Q., et al.: The biocompatibility of carbon nanotubes. Carbon 44, 1034–1047 (2006)CrossRef
100.
go back to reference Foldvari, M., Bagonluri, M.: Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed. Nanotechnol. 4, 183–200 (2008)CrossRef Foldvari, M., Bagonluri, M.: Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed. Nanotechnol. 4, 183–200 (2008)CrossRef
101.
go back to reference Yang, R., Yang, X., Zhang, Z., et al.: Single-walled carbon nanotubes-mediated in vivo and in vitro delivery of siRNA into antigen-presenting cells. Gene Ther. 13, 1714–1723 (2006)CrossRef Yang, R., Yang, X., Zhang, Z., et al.: Single-walled carbon nanotubes-mediated in vivo and in vitro delivery of siRNA into antigen-presenting cells. Gene Ther. 13, 1714–1723 (2006)CrossRef
102.
go back to reference Mooney, E., Dockery, P., Greiser, U., et al.: Carbon nanotubes and mesenchymal stem cells: biocompatibility, proliferation and differentiation. Nano Lett. 8, 2137–2143 (2008)CrossRef Mooney, E., Dockery, P., Greiser, U., et al.: Carbon nanotubes and mesenchymal stem cells: biocompatibility, proliferation and differentiation. Nano Lett. 8, 2137–2143 (2008)CrossRef
103.
go back to reference Lobo, A.O., Antunes, E.F., Palma, M.B.S., et al.: Biocompatibility of multi-walled carbon nanotubes grown on titanium and silicon surfaces. Mat. Sci. Eng. C Biol. S 28, 532–538 (2008)CrossRef Lobo, A.O., Antunes, E.F., Palma, M.B.S., et al.: Biocompatibility of multi-walled carbon nanotubes grown on titanium and silicon surfaces. Mat. Sci. Eng. C Biol. S 28, 532–538 (2008)CrossRef
104.
go back to reference Carrero-Sanchez, J.C., Elias, A.L., Mancilla, R., et al.: Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 6, 1609–1616 (2006)CrossRef Carrero-Sanchez, J.C., Elias, A.L., Mancilla, R., et al.: Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 6, 1609–1616 (2006)CrossRef
105.
go back to reference Koziara, J.M., Oh, J.J., Akers, W.S., et al.: Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles. Pharm. Res. 22, 1821–1828 (2005)CrossRef Koziara, J.M., Oh, J.J., Akers, W.S., et al.: Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles. Pharm. Res. 22, 1821–1828 (2005)CrossRef
106.
go back to reference Kam, N.W.S., O’Connell, M., Wisdom, J.A., et al.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. PNAS 102, 11600–11605 (2005)CrossRef Kam, N.W.S., O’Connell, M., Wisdom, J.A., et al.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. PNAS 102, 11600–11605 (2005)CrossRef
107.
go back to reference Bronich, T.K., Keifer, P.A., Shlyakhtenko, L.S., et al.: Polymer micelle with cross-linked ionic core. J. Am. Chem. Soc. 127, 8236–8237 (2005)CrossRef Bronich, T.K., Keifer, P.A., Shlyakhtenko, L.S., et al.: Polymer micelle with cross-linked ionic core. J. Am. Chem. Soc. 127, 8236–8237 (2005)CrossRef
108.
go back to reference Bontha, S., Kabanov, A.V., Bronich, T.K.: Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J. Control Release 114, 163–174 (2006)CrossRef Bontha, S., Kabanov, A.V., Bronich, T.K.: Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J. Control Release 114, 163–174 (2006)CrossRef
109.
go back to reference Kim, J.O., Kabanov, A.V., Bronich, T.K.: Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J. Control Release 138, 197–204 (2009)CrossRef Kim, J.O., Kabanov, A.V., Bronich, T.K.: Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J. Control Release 138, 197–204 (2009)CrossRef
110.
go back to reference Tian, Y., Bromberg, L., Lin, S.N., et al.: Complexation and release of doxorubicin from its complexes with pluronic P85-b-poly(acrylic acid) block copolymers. J. Control Release 121, 137–145 (2007)CrossRef Tian, Y., Bromberg, L., Lin, S.N., et al.: Complexation and release of doxorubicin from its complexes with pluronic P85-b-poly(acrylic acid) block copolymers. J. Control Release 121, 137–145 (2007)CrossRef
111.
go back to reference Tian, Y., Ravi, P., Bromberg, L., et al.: Synthesis and aggregation behavior of Pluronic F87/poly(acrylic acid) block copolymer in the presence of doxorubicin. Langmuir 23, 2638–2646 (2007)CrossRef Tian, Y., Ravi, P., Bromberg, L., et al.: Synthesis and aggregation behavior of Pluronic F87/poly(acrylic acid) block copolymer in the presence of doxorubicin. Langmuir 23, 2638–2646 (2007)CrossRef
112.
go back to reference Kwon, G., Naito, M., Yokoyama, M., et al.: Block copolymer micelles for drug delivery: loading and release of doxorubicin. J. Control Release 48, 195–201 (1997)CrossRef Kwon, G., Naito, M., Yokoyama, M., et al.: Block copolymer micelles for drug delivery: loading and release of doxorubicin. J. Control Release 48, 195–201 (1997)CrossRef
113.
go back to reference Matsumura, Y., Kataoka, K.: Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci. 100, 572–579 (2009)CrossRef Matsumura, Y., Kataoka, K.: Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci. 100, 572–579 (2009)CrossRef
114.
go back to reference Matsumura, Y.: Polymeric micellar delivery systems in oncology. Jpn. J. Clin. Oncol. 38, 793–802 (2008)CrossRef Matsumura, Y.: Polymeric micellar delivery systems in oncology. Jpn. J. Clin. Oncol. 38, 793–802 (2008)CrossRef
115.
go back to reference Gref, R., Luck, M., Quellec, P., et al.: ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Coll. Surf. B 18, 301–313 (2000)CrossRef Gref, R., Luck, M., Quellec, P., et al.: ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Coll. Surf. B 18, 301–313 (2000)CrossRef
116.
go back to reference Batrakova, E.V., Kabanov, A.V.: Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control Release 130, 98–106 (2008)CrossRef Batrakova, E.V., Kabanov, A.V.: Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control Release 130, 98–106 (2008)CrossRef
117.
go back to reference Vittaz, M., Bazile, D., Spenlehauer, G., et al.: Effect of PEOsurface density on long-circulating PLA-PEO nanoparticles which are very low complement activators. Biomaterials 17, 1575–1581 (1996)CrossRef Vittaz, M., Bazile, D., Spenlehauer, G., et al.: Effect of PEOsurface density on long-circulating PLA-PEO nanoparticles which are very low complement activators. Biomaterials 17, 1575–1581 (1996)CrossRef
118.
go back to reference Diederichs, J.E.: Plasma protein adsorption patterns on liposomes: establishment of analytical procedure. Electrophoresis 17, 607–611 (1996)CrossRef Diederichs, J.E.: Plasma protein adsorption patterns on liposomes: establishment of analytical procedure. Electrophoresis 17, 607–611 (1996)CrossRef
119.
go back to reference Chonn, A., Cullis, P.R., Devine, D.V.: The role of surface-charge in the activation of the classical and alternative pathways of complement by liposomes. J. Immunol. 146, 4234–4241 (1991) Chonn, A., Cullis, P.R., Devine, D.V.: The role of surface-charge in the activation of the classical and alternative pathways of complement by liposomes. J. Immunol. 146, 4234–4241 (1991)
120.
go back to reference LaVan, D.A., McGuire, T., Langer, R.: Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21, 1184–1191 (2003)CrossRef LaVan, D.A., McGuire, T., Langer, R.: Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21, 1184–1191 (2003)CrossRef
121.
go back to reference Moghimi, S.M., Szebeni, J.: Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 42, 463–478 (2003)CrossRef Moghimi, S.M., Szebeni, J.: Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 42, 463–478 (2003)CrossRef
122.
go back to reference Salvador-Morales, C., Zhang, L.F., Langer, R., et al.: Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 30, 2231–2240 (2009)CrossRef Salvador-Morales, C., Zhang, L.F., Langer, R., et al.: Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 30, 2231–2240 (2009)CrossRef
Metadata
Title
Recognition of Carbon Nanotubes by the Human Innate Immune System
Authors
Malgorzata J. Rybak-Smith
Kirsten M. Pondman
Emmanuel Flahaut
Carolina Salvador-Morales
Robert B. Sim
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-14802-6_10