Skip to main content
Top
Published in: Pattern Recognition and Image Analysis 2/2020

01-04-2020 | APPLICATION PROBLEMS

Recognition of Cardiovascular Diseases through Retinal Images Using Optic Cup to Optic Disc Ratio

Author: S. Palanivel Rajan

Published in: Pattern Recognition and Image Analysis | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the versatile advanced world, diseases due to the cardiovascular disease (CVD) play a major role in human health disorders event leads to death. CVD deaths accounts for 80% in males and 75% in females. Cardiovascular diseases are the leading cause of death globally. By 2030, over 23 million people will die from CVD every year. Up to 90% of cardiovascular disease may be preventable if they are properly recognized and correct treatment should be given at the earlier stage. This paper undergoes one of the key factors to find CVD is through retinal vessels, the processes involved in those measurements could predict the presence of diseases. The main function that is involved in the retinal vessels is the extraction of information present inside the tissues which is used in the case of recognition and treatment towards cardiovascular diseases such as stroke, blood pressure, hyper tension, glaucoma etc. The retinal image taken is filtered and then segmented. Their result is used for arteries and vein classification through the support vector machine (SVM). By detecting the optic cup and optic disc measurement, cup-to-disc ratio (CDR) is calculated here. By using artificial neural networks (ANN), the presence of CVD is recognized and their parameters are measured. Hence, the presence of CVD is recognized through the retinal images are detected in this paper.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Palanivel Rajan and V. Kavitha, “Diagnosis of cardiovascular diseases using retinal images through vessel segmentation graph,” Curr. Med. Imaging Rev. 13 (4), 454–459 (2017). S. Palanivel Rajan and V. Kavitha, “Diagnosis of cardiovascular diseases using retinal images through vessel segmentation graph,” Curr. Med. Imaging Rev. 13 (4), 454–459 (2017).
2.
go back to reference P. Seebock, S. M. Waldstein, S. Klimscha, H. Bogunovic, T. Schlegl, B. S. Gerendas, R. Donner, U. Schmidt-Erfurth, and G. Langs, “Unsupervised identification of disease marker candidates in retinal OCT imaging data,” IEEE Trans. Med. Imaging 38 (4), 1037–1047 (2019).CrossRef P. Seebock, S. M. Waldstein, S. Klimscha, H. Bogunovic, T. Schlegl, B. S. Gerendas, R. Donner, U. Schmidt-Erfurth, and G. Langs, “Unsupervised identification of disease marker candidates in retinal OCT imaging data,” IEEE Trans. Med. Imaging 38 (4), 1037–1047 (2019).CrossRef
3.
go back to reference A. M. R. R. Bandara and P. W. G. R. M. P. B. Giragama, “A retinal image enhancement technique for blood vessel segmentation algorithm,” in Proc. 2017 IEEE Int. Conf. on Industrial and Information Systems (ICIIS) (Peradeniya, Sri Lanka, 2017), pp. 535–539. A. M. R. R. Bandara and P. W. G. R. M. P. B. Giragama, “A retinal image enhancement technique for blood vessel segmentation algorithm,” in Proc. 2017 IEEE Int. Conf. on Industrial and Information Systems (ICIIS) (Peradeniya, Sri Lanka, 2017), pp. 535–539.
4.
go back to reference R. J. Chalakkal, W. H. Abdulla, S. S. Thulaseedharan, “Automatic detection and segmentation of optic disc and fovea in retinal images,” IET Image Process. 12 (11), 2100–2110 (2018).CrossRef R. J. Chalakkal, W. H. Abdulla, S. S. Thulaseedharan, “Automatic detection and segmentation of optic disc and fovea in retinal images,” IET Image Process. 12 (11), 2100–2110 (2018).CrossRef
5.
go back to reference J. Cheng, Z. Li, Z. Gu, H. Fu, D. W. K. Wong, and J. Liu, “Structure-preserving guided retinal image filtering and its application for optic disk analysis,” IEEE Trans. Med. Imaging 37 (11), 2536–2546 (2018).CrossRef J. Cheng, Z. Li, Z. Gu, H. Fu, D. W. K. Wong, and J. Liu, “Structure-preserving guided retinal image filtering and its application for optic disk analysis,” IEEE Trans. Med. Imaging 37 (11), 2536–2546 (2018).CrossRef
6.
go back to reference C. Vivek and S. Palanivel Rajan, “Z-TCAM : An efficient memory architecture based TCAM,” Asian J. Inf. Technol. 15 (3), 448–454 (2016). C. Vivek and S. Palanivel Rajan, “Z-TCAM : An efficient memory architecture based TCAM,” Asian J. Inf. Technol. 15 (3), 448–454 (2016).
7.
go back to reference K. M. Adal, P. G. van Etten, J. P. Martinez, K. W. Rouwen, K. A. Vermeer, and L. J. van Vliet, “An automated system for the detection and classification of retinal changes due to red lesions in longitudinal fundus images,” IEEE Trans. Biomed. Eng. 65 (6), 1382–1390 (2018).CrossRef K. M. Adal, P. G. van Etten, J. P. Martinez, K. W. Rouwen, K. A. Vermeer, and L. J. van Vliet, “An automated system for the detection and classification of retinal changes due to red lesions in longitudinal fundus images,” IEEE Trans. Biomed. Eng. 65 (6), 1382–1390 (2018).CrossRef
8.
go back to reference J. Hu, Y. Chen, J. Zhong, R. Ju, and Z. Yi, “Automated analysis for retinopathy of prematurity by deep neural networks,” IEEE Trans. Med. Imaging 38 (1), 269–279 (2018).CrossRef J. Hu, Y. Chen, J. Zhong, R. Ju, and Z. Yi, “Automated analysis for retinopathy of prematurity by deep neural networks,” IEEE Trans. Med. Imaging 38 (1), 269–279 (2018).CrossRef
9.
go back to reference Q. Li, X. Zhou, G. Yang, H. Zhang, and T. Wang, “A high-speed end-to-end approach for retinal arteriovenous segmentation,” in Proc. 2017 10th Int. Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI 2017) (Shanghai, China, 2017), IEEE, pp. 1–5. Q. Li, X. Zhou, G. Yang, H. Zhang, and T. Wang, “A high-speed end-to-end approach for retinal arteriovenous segmentation,” in Proc. 2017 10th Int. Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI 2017) (Shanghai, China, 2017), IEEE, pp. 1–5.
10.
go back to reference S. Vijayprasath and S. Palanivel Rajan, “Performance investigation of an implicit instrumentation tool for deadened patients using common eye developments as a paradigm,” Int. J. Appl. Eng. Res. 10 (1), 925–929 (2015). S. Vijayprasath and S. Palanivel Rajan, “Performance investigation of an implicit instrumentation tool for deadened patients using common eye developments as a paradigm,” Int. J. Appl. Eng. Res. 10 (1), 925–929 (2015).
11.
go back to reference Renoh Johnson Chalakkal, Waleed Habib Abdulla, Sinumol Sukumaran Thulaseedharan, “Automatic detection and segmentation of optic disc and fovea in retinal images,” Institution of Engineering and Technology (IET), 2018. Renoh Johnson Chalakkal, Waleed Habib Abdulla, Sinumol Sukumaran Thulaseedharan, “Automatic detection and segmentation of optic disc and fovea in retinal images,” Institution of Engineering and Technology (IET), 2018.
12.
go back to reference E. Pellegrini, G. Robertson, T. MacGillivray, J. van Hemert, G. Houston, and E. Trucc, “A graph cut approach to artery/vein classification in ultra-widefield scanning laser ophthalmoscopy,” IEEE Trans. Med. Imaging 37 (2), 516–526 (2018).CrossRef E. Pellegrini, G. Robertson, T. MacGillivray, J. van Hemert, G. Houston, and E. Trucc, “A graph cut approach to artery/vein classification in ultra-widefield scanning laser ophthalmoscopy,” IEEE Trans. Med. Imaging 37 (2), 516–526 (2018).CrossRef
13.
go back to reference L. Dai, R. Fang, H. Li, X. Hou, B. Sheng, Q. Wu, and W. Jia, “Clinical report guided retinal microaneurysm detection with multi-sieving deep learning,” IEEE Trans. Med. Imaging 37 (5), 1149–1161 (2018).CrossRef L. Dai, R. Fang, H. Li, X. Hou, B. Sheng, Q. Wu, and W. Jia, “Clinical report guided retinal microaneurysm detection with multi-sieving deep learning,” IEEE Trans. Med. Imaging 37 (5), 1149–1161 (2018).CrossRef
14.
go back to reference B. Dashtbozorg, J. Zhang, F. Huang, and B. M. ter Haar Romeny, “Retinal microaneurysms detection using local convergence index features,” IEEE Trans. Image Process. 27 (7), 3300–3315 (2018).MathSciNetCrossRef B. Dashtbozorg, J. Zhang, F. Huang, and B. M. ter Haar Romeny, “Retinal microaneurysms detection using local convergence index features,” IEEE Trans. Image Process. 27 (7), 3300–3315 (2018).MathSciNetCrossRef
15.
go back to reference M. Hajabdollahi, R. Esfandiarpoor, K. Najarian, N. Karimi, S. Samavi, and S. M. Reza-Soroushmeh, “Low complexity convolutional neural network for vessel segmentation in portable retinal diagnostic devices,” in Proc. 2018 25th IEEE Int. Conf. on Image Processing (ICIP 2018) (Athens, Greece, 2018), pp. 2785–2789. M. Hajabdollahi, R. Esfandiarpoor, K. Najarian, N. Karimi, S. Samavi, and S. M. Reza-Soroushmeh, “Low complexity convolutional neural network for vessel segmentation in portable retinal diagnostic devices,” in Proc. 2018 25th IEEE Int. Conf. on Image Processing (ICIP 2018) (Athens, Greece, 2018), pp. 2785–2789.
16.
go back to reference S. Sil Kar and S. P. Maity, “Automatic detection of retinal lesions for screening of diabetic retinopathy,” IEEE Trans. Biomed. Eng. 65 (3), 608–618 (2018).CrossRef S. Sil Kar and S. P. Maity, “Automatic detection of retinal lesions for screening of diabetic retinopathy,” IEEE Trans. Biomed. Eng. 65 (3), 608–618 (2018).CrossRef
17.
go back to reference S. Palanivel Rajan and K. Sheikdavood, “Performance evaluation on automatic follicles detection in the ovary,” Int. J. Appl. Eng. Res. 10 (55), 1–5 (2015). S. Palanivel Rajan and K. Sheikdavood, “Performance evaluation on automatic follicles detection in the ovary,” Int. J. Appl. Eng. Res. 10 (55), 1–5 (2015).
18.
go back to reference S. Abbasi-Sureshjani, M. Favali, G. Citti, A. Sarti, and B. M. ter Haar Romeny, “Curvature integration in a 5D kernel for extracting vessel connections in retinal images,” IEEE Trans. Image Process. 27 (2), 606–621 (2018).MathSciNetCrossRef S. Abbasi-Sureshjani, M. Favali, G. Citti, A. Sarti, and B. M. ter Haar Romeny, “Curvature integration in a 5D kernel for extracting vessel connections in retinal images,” IEEE Trans. Image Process. 27 (2), 606–621 (2018).MathSciNetCrossRef
19.
go back to reference T. B. Dubose, D. Cunefare, E. Cole, P. Milanfar, J. A. Izatt, and S. Farsiu, “Statistical models of signal and noise and fundamental limits of segmentation accuracy in retinal optical coherence tomography,” IEEE Trans. Med. Imaging 37 (9), 1978–1988 (2018).CrossRef T. B. Dubose, D. Cunefare, E. Cole, P. Milanfar, J. A. Izatt, and S. Farsiu, “Statistical models of signal and noise and fundamental limits of segmentation accuracy in retinal optical coherence tomography,” IEEE Trans. Med. Imaging 37 (9), 1978–1988 (2018).CrossRef
20.
go back to reference S. Palanivel Rajan and T. Dinesh, “Systematic review on wearable driver vigilance system with future research directions,” Int. J. Appl. Eng. Res. 10 (1), 627–632 (2015). S. Palanivel Rajan and T. Dinesh, “Systematic review on wearable driver vigilance system with future research directions,” Int. J. Appl. Eng. Res. 10 (1), 627–632 (2015).
21.
go back to reference M. Zhou, K. Jin, S. Wang, J. Ye, and D. Qian, “Color retinal image enhancement based on luminosity and contrast adjustment,” IEEE Trans. Biomed. Eng. 65 (3), 521–527 (2018).CrossRef M. Zhou, K. Jin, S. Wang, J. Ye, and D. Qian, “Color retinal image enhancement based on luminosity and contrast adjustment,” IEEE Trans. Biomed. Eng. 65 (3), 521–527 (2018).CrossRef
22.
go back to reference S. Mohanapriya and M. Vadivel, “Automatic retrival of MRI brain image using multiqueries system,” in Proc. 2013 Int. Conf. on Information Communication and Embedded Systems (ICICES) (Chennai, India, 2013), pp. 1099–1103. S. Mohanapriya and M. Vadivel, “Automatic retrival of MRI brain image using multiqueries system,” in Proc. 2013 Int. Conf. on Information Communication and Embedded Systems (ICICES) (Chennai, India, 2013), pp. 1099–1103.
23.
go back to reference S. Palanivel Rajan and R. Sukanesh, “Experimental studies on intelligent, wearable and automated wireless mobile tele-alert system for continuous cardiac surveillance,” J. Appl. Res. Technol. 11 (1), 133–143 (2013).CrossRef S. Palanivel Rajan and R. Sukanesh, “Experimental studies on intelligent, wearable and automated wireless mobile tele-alert system for continuous cardiac surveillance,” J. Appl. Res. Technol. 11 (1), 133–143 (2013).CrossRef
24.
go back to reference S. Palanivel Rajan and R. Sukanesh, “Viable investigations and real time recitation of enhanced ECG-based cardiac telemonitoring system for homecare applications: a systematic evaluation,” Telemed. J. E-Health 19 (4), 278–286 (2013).CrossRef S. Palanivel Rajan and R. Sukanesh, “Viable investigations and real time recitation of enhanced ECG-based cardiac telemonitoring system for homecare applications: a systematic evaluation,” Telemed. J. E-Health 19 (4), 278–286 (2013).CrossRef
25.
go back to reference S. Palanivel Rajan, “Review and investigations on future research directions of mobile based telecare system for cardiac surveillance,” J. Appl. Res. Technol. 13 (4), 454–460 (2015).CrossRef S. Palanivel Rajan, “Review and investigations on future research directions of mobile based telecare system for cardiac surveillance,” J. Appl. Res. Technol. 13 (4), 454–460 (2015).CrossRef
26.
go back to reference M. Manikandan, M. Paranthaman, and B. Neeththi Aadithiya, “Detection of calcification form mammogram image using canny edge detector,” Indian J. Sci. Technol. 11 (20), 1–5 (2018).CrossRef M. Manikandan, M. Paranthaman, and B. Neeththi Aadithiya, “Detection of calcification form mammogram image using canny edge detector,” Indian J. Sci. Technol. 11 (20), 1–5 (2018).CrossRef
Metadata
Title
Recognition of Cardiovascular Diseases through Retinal Images Using Optic Cup to Optic Disc Ratio
Author
S. Palanivel Rajan
Publication date
01-04-2020
Publisher
Pleiades Publishing
Published in
Pattern Recognition and Image Analysis / Issue 2/2020
Print ISSN: 1054-6618
Electronic ISSN: 1555-6212
DOI
https://doi.org/10.1134/S105466182002011X

Other articles of this Issue 2/2020

Pattern Recognition and Image Analysis 2/2020 Go to the issue

Premium Partner