Abstract
This paper presents a method for extracting and reassembling a genealogical network automatically from a biographical register of historical people. The method is applied to a dataset of short textual biographies about all 28 000 Finnish and Swedish academic people educated in 1640–1899 in Finland. The aim is to connect and disambiguate the relatives mentioned in the biographies in order to build a continuous, genealogical network, which can be used in Digital Humanities for data and network analysis of historical academic people and their lives. An artificial neural network approach is presented for solving a supervised learning task to disambiguate relatives mentioned in the register descriptions using basic biographical information enhanced with an ontology of vocations and additional occasionally sparse genealogical information. Evaluation results of the record linkage are promising and provide novel insights into the problem of historical people register reconciliation. The outcome of the work has been used in practise as part of the in-use AcademySampo portal and linked open data service, a new member in the Sampo series of cultural heritage applications for Digital Humanities.