Skip to main content
Top

2024 | OriginalPaper | Chapter

Reconstruction of Boundary Conditions of a Parabolic-Hyperbolic Transmission Problem

Authors : Miglena N. Koleva, Lubin G. Vulkov

Published in: New Trends in the Applications of Differential Equations in Sciences

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider a special kind of interface partial differential equations problems, which solution is defined in a few disjoint distant domains, where the effect of the intermediate region (layer) is modeled by means of nonlocal jump conditions across the layer. Our aim is the numerical identification of external boundary conditions for parabolic-hyperbolic problems on disjoint domains from given point data. We develop decomposition techniques to obtain exact formulas for the unknown boundary conditions. A number of numerical examples are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Al-Droubi A., Renardy M.: Energy methods for a parabolic-hyperbolic interface problem arising in electromagnetism, Z. Angew. Math. Phys., 1988, 39(6), 931–936. Al-Droubi A., Renardy M.: Energy methods for a parabolic-hyperbolic interface problem arising in electromagnetism, Z. Angew. Math. Phys., 1988, 39(6), 931–936.
2.
go back to reference Berres S., Bürger R., Karlsen K.H., Tory E.M.: Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 2003, 64(1), 41–80. Berres S., Bürger R., Karlsen K.H., Tory E.M.: Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 2003, 64(1), 41–80.
3.
go back to reference Bouziani A.: Solution of a transmission problem for semilinear parabolic-hyperbolic equations by the timediscretization method, J. Appl. Math. Stoch. Anal., 2006, 61439. Bouziani A.: Solution of a transmission problem for semilinear parabolic-hyperbolic equations by the timediscretization method, J. Appl. Math. Stoch. Anal., 2006, 61439.
4.
go back to reference Cao Y., Yin J., Liu Q., Li M.: A class of nonlinear parabolic-hyperbolic equations applied to image restoration, Nonlin. Anal. Real World Appl., 2010, 11(1), 253–261. Cao Y., Yin J., Liu Q., Li M.: A class of nonlinear parabolic-hyperbolic equations applied to image restoration, Nonlin. Anal. Real World Appl., 2010, 11(1), 253–261.
5.
go back to reference Datta, A.K.: Biological and Bioenvironmental Heat and Mass Transfer, 1st ed; Marcel Dekker: New York, 2002, 424p. Datta, A.K.: Biological and Bioenvironmental Heat and Mass Transfer, 1st ed; Marcel Dekker: New York, 2002, 424p.
6.
go back to reference D. Govoli: Exact representations on artificial interfaces and applications in mechanics, Appl. Mech. Rev. 52(11), 333–349 (1999). D. Govoli: Exact representations on artificial interfaces and applications in mechanics, Appl. Mech. Rev. 52(11), 333–349 (1999).
7.
go back to reference Milovanović Jeknić, Z.: Parabolic-hyperbolic transmission problem in disjoint domains, Filomat 32(20), 6911–6920 (2018). Milovanović Jeknić, Z.: Parabolic-hyperbolic transmission problem in disjoint domains, Filomat 32(20), 6911–6920 (2018).
8.
go back to reference Jovanović, B.S., Vulkov, L.G.: Analysis and numerical approximation of a parabolic-hyperbolic transmission problem, Centr. Eur. J. Math. 10, 73–84 (2012). Jovanović, B.S., Vulkov, L.G.: Analysis and numerical approximation of a parabolic-hyperbolic transmission problem, Centr. Eur. J. Math. 10, 73–84 (2012).
9.
go back to reference Jovanović, B.S., Vulkov, L.G.: Numerical solution of a two-dimensional hyperbolic transmission problem, J. Comput. Appl. Math. 235 (2010) 519–534. Jovanović, B.S., Vulkov, L.G.: Numerical solution of a two-dimensional hyperbolic transmission problem, J. Comput. Appl. Math. 235 (2010) 519–534.
10.
go back to reference Hasanoglu, A., Romanov, V.G.: Introduction to Inverse Problems for Differential Equations, 1st ed Springer Cham, 2017, 261p. Hasanoglu, A., Romanov, V.G.: Introduction to Inverse Problems for Differential Equations, 1st ed Springer Cham, 2017, 261p.
11.
go back to reference Kabanikhin, S.I.: Inverse and Ill-Posed Problems, DeGruyer, Berlin, 2011. Kabanikhin, S.I.: Inverse and Ill-Posed Problems, DeGruyer, Berlin, 2011.
12.
go back to reference Koleva, M.N., Vulkov, L.G.: Numerical identification of external boundary conditions for time fractional parabolic equations on disjoint domains. Fractal Fract. 2023, 7, 326. Koleva, M.N., Vulkov, L.G.: Numerical identification of external boundary conditions for time fractional parabolic equations on disjoint domains. Fractal Fract. 2023, 7, 326.
13.
go back to reference Koleva, M.N., Milovanovic Jeknic, Z.D., Vulkov, L.G.: Determination of external boundary conditions of a stationary nonlinear problem on disjoint intervals at point observation, Studies in Computational Intelligence, 2023, accepted. Koleva, M.N., Milovanovic Jeknic, Z.D., Vulkov, L.G.: Determination of external boundary conditions of a stationary nonlinear problem on disjoint intervals at point observation, Studies in Computational Intelligence, 2023, accepted.
14.
go back to reference Korzyuk, V.I.: A conjugacy problem for equations of hyperbolic and parabolic types, Differentsial’nye Uravneniya 4(10), 1854–1866 (1968). Korzyuk, V.I.: A conjugacy problem for equations of hyperbolic and parabolic types, Differentsial’nye Uravneniya 4(10), 1854–1866 (1968).
15.
go back to reference Lesnic, D.: Inverse Problems with Applications in Science and Engineering, CRC Pres, Abingdon UK, 2021, p. 349. Lesnic, D.: Inverse Problems with Applications in Science and Engineering, CRC Pres, Abingdon UK, 2021, p. 349.
16.
go back to reference Lions, J.L., Un exemple de probleme aux limites couple parabolique-hyperbolique pour une structure pluri-dimensionnelle. Calcolo 22, 7–15 (1985). Lions, J.L., Un exemple de probleme aux limites couple parabolique-hyperbolique pour une structure pluri-dimensionnelle. Calcolo 22, 7–15 (1985).
17.
go back to reference Mascia, C., Porretta, A., Terracina, A.: Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations. Arch. Rational Mech. Anal. 163, 87–124 (2002). Mascia, C., Porretta, A., Terracina, A.: Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations. Arch. Rational Mech. Anal. 163, 87–124 (2002).
18.
go back to reference Qin, Y.: Nonlinear parabolic-hyperbolic coupled systems and their attractors, Oper. Theory Adv. Appl., 184, Birkhuser, Basel, 2008. Qin, Y.: Nonlinear parabolic-hyperbolic coupled systems and their attractors, Oper. Theory Adv. Appl., 184, Birkhuser, Basel, 2008.
19.
go back to reference Samarskii, A.A., Vabishchevich, P.N.: Numerical Methods for Solving Inverse Problems of Mathematical Physics, de Gruyter, 2007, 452 p. Samarskii, A.A., Vabishchevich, P.N.: Numerical Methods for Solving Inverse Problems of Mathematical Physics, de Gruyter, 2007, 452 p.
20.
go back to reference Samarskii, A.A., Vabishchevich, P.N., Lemeshchevskii, S.V., Matus, P.P.: Difference schemes for the problem of coupling equations of hyperbolic and parabolic types, Siberian Mathematical Journal, 39(4), 954–962 (1998) (In Russian). Samarskii, A.A., Vabishchevich, P.N., Lemeshchevskii, S.V., Matus, P.P.: Difference schemes for the problem of coupling equations of hyperbolic and parabolic types, Siberian Mathematical Journal, 39(4), 954–962 (1998) (In Russian).
21.
go back to reference Tory, E.M., Karlsen K.H, Burger, R., Berres, S.: Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math. 64(1), 41–80 (2003). Tory, E.M., Karlsen K.H, Burger, R., Berres, S.: Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math. 64(1), 41–80 (2003).
Metadata
Title
Reconstruction of Boundary Conditions of a Parabolic-Hyperbolic Transmission Problem
Authors
Miglena N. Koleva
Lubin G. Vulkov
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_38

Premium Partner