Skip to main content
Top

2015 | OriginalPaper | Chapter

2. Recovering Time-Resolved Imaging Forces in Solution by Scanning Probe Acceleration Microscopy: Theory and Application

Authors : Maxmore Chaibva, Nicole Shamitko-Klingensmith, Justin Legleiter

Published in: Surface Science Tools for Nanomaterials Characterization

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Scanning probe acceleration microscopy (SPAM) is a technique that reconstructs the time-resolved tip/sample forces during standard tapping-mode atomic force microscopy (TMAFM) imaging in solution, allowing for the simultaneous mapping of topography and mechanical properties of surfaces. Here, we describe the relationship between tapping forces and sample mechanical properties, the theoretical basis for the SPAM technique, and its application to a variety of systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci 290(1–2):L688–L692 Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci 290(1–2):L688–L692
2.
go back to reference Burnham NA, Behrend OP, Oulevey F, Gremaud G et al (1997) How does a tip tap? Nanotechnology 8(2):67–75CrossRef Burnham NA, Behrend OP, Oulevey F, Gremaud G et al (1997) How does a tip tap? Nanotechnology 8(2):67–75CrossRef
3.
go back to reference Nony L, Boisgard R, Aime JP (1999) Nonlinear dynamical properties of an oscillating tip-cantilever system in the tapping mode. J Chem Phys 111(4):1615–1627CrossRef Nony L, Boisgard R, Aime JP (1999) Nonlinear dynamical properties of an oscillating tip-cantilever system in the tapping mode. J Chem Phys 111(4):1615–1627CrossRef
4.
go back to reference Cleveland JP, Anczykowski B, Schmid AE, Elings VB (1998) Energy dissipation in tapping-mode atomic force microscopy. Appl Phys Lett 72(20):2613–2615CrossRef Cleveland JP, Anczykowski B, Schmid AE, Elings VB (1998) Energy dissipation in tapping-mode atomic force microscopy. Appl Phys Lett 72(20):2613–2615CrossRef
5.
go back to reference Tamayo J, Garcia R (1998) Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy. Appl Phys Lett 73(20):2926–2928CrossRef Tamayo J, Garcia R (1998) Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy. Appl Phys Lett 73(20):2926–2928CrossRef
6.
go back to reference Zitzler L, Herminghaus S, Mugele F (2002) Capillary forces in tapping mode atomic force microscopy. Phys Rev B 66(15):155436CrossRef Zitzler L, Herminghaus S, Mugele F (2002) Capillary forces in tapping mode atomic force microscopy. Phys Rev B 66(15):155436CrossRef
7.
go back to reference Garcia R, Tamayo J, San Paulo A (1999) Phase contrast and surface energy hysteresis in tapping mode scanning force microsopy. Surf Interface Anal 27(5–6):312–316CrossRef Garcia R, Tamayo J, San Paulo A (1999) Phase contrast and surface energy hysteresis in tapping mode scanning force microsopy. Surf Interface Anal 27(5–6):312–316CrossRef
8.
go back to reference Stark M, Möller C, Müller DJ, Guckenberger R (2001) From images to interactions: high-resolution phase imaging in tapping-mode atomic force microscopy. Biophys J 80(6):3009–3018CrossRef Stark M, Möller C, Müller DJ, Guckenberger R (2001) From images to interactions: high-resolution phase imaging in tapping-mode atomic force microscopy. Biophys J 80(6):3009–3018CrossRef
9.
go back to reference Marcus MS, Carpick RW, Sasaki DY, Eriksson MA (2002) Material anisotropy revealed by phase contrast in intermittent contact atomic force microscopy. Phys Rev Lett 88(22):226103CrossRef Marcus MS, Carpick RW, Sasaki DY, Eriksson MA (2002) Material anisotropy revealed by phase contrast in intermittent contact atomic force microscopy. Phys Rev Lett 88(22):226103CrossRef
10.
go back to reference Melcher J, Carrasco C, Xu X, Carrascosa JL et al (2009) Origins of phase contrast in the atomic force microscope in liquids. Proc Natl Acad Sci U S A 106(33):13655–13660CrossRef Melcher J, Carrasco C, Xu X, Carrascosa JL et al (2009) Origins of phase contrast in the atomic force microscope in liquids. Proc Natl Acad Sci U S A 106(33):13655–13660CrossRef
11.
go back to reference Stark M, Stark RW, Heckl WM, Guckenberger R (2002) Inverting dynamic force microscopy: from signals to time-resolved interaction forces. Proc Natl Acad Sci U S A 99(13):8473–8478CrossRef Stark M, Stark RW, Heckl WM, Guckenberger R (2002) Inverting dynamic force microscopy: from signals to time-resolved interaction forces. Proc Natl Acad Sci U S A 99(13):8473–8478CrossRef
12.
go back to reference Balantekin M, Onaran AG, Degertekin FL (2008) Quantitative mechanical characterization of materials at the nanoscale through direct measurement of time-resolved tip-sample interaction forces. Nanotechnology 19(8):085704CrossRef Balantekin M, Onaran AG, Degertekin FL (2008) Quantitative mechanical characterization of materials at the nanoscale through direct measurement of time-resolved tip-sample interaction forces. Nanotechnology 19(8):085704CrossRef
13.
go back to reference Garcia R, Herruzo ET (2012) The emergence of multifrequency force microscopy. Nat Nanotechnol 7(4):217–226CrossRef Garcia R, Herruzo ET (2012) The emergence of multifrequency force microscopy. Nat Nanotechnol 7(4):217–226CrossRef
14.
go back to reference Legleiter J, Park M, Cusick B, Kowalewski T (2006) Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. Proc Natl Acad Sci U S A 103:4813–4818CrossRef Legleiter J, Park M, Cusick B, Kowalewski T (2006) Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. Proc Natl Acad Sci U S A 103:4813–4818CrossRef
15.
go back to reference Sahin O, Magonov S, Su C, Quate CF et al (2007) An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat Nanotechnol 2(8):507–514CrossRef Sahin O, Magonov S, Su C, Quate CF et al (2007) An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat Nanotechnol 2(8):507–514CrossRef
16.
go back to reference Sahin O, Quate CF, Solgaard O, Atalar A (2004) Resonant harmonic response in tapping-mode atomic force microscopy. Phys Rev B 69(16):165416CrossRef Sahin O, Quate CF, Solgaard O, Atalar A (2004) Resonant harmonic response in tapping-mode atomic force microscopy. Phys Rev B 69(16):165416CrossRef
17.
go back to reference Sahin O, Yaralioglu G, Grow R, Zappe SF et al (2004) High-resolution imaging of elastic properties using harmonic cantilevers. Sensor Actuat A-Phys 114(2–3):183–190CrossRef Sahin O, Yaralioglu G, Grow R, Zappe SF et al (2004) High-resolution imaging of elastic properties using harmonic cantilevers. Sensor Actuat A-Phys 114(2–3):183–190CrossRef
18.
go back to reference Sarioglu AF, Magonov S, Solgaard O (2012) Tapping-mode force spectroscopy using cantilevers with interferometric high-bandwidth force sensors. Appl Phys Lett 100(5):053109CrossRef Sarioglu AF, Magonov S, Solgaard O (2012) Tapping-mode force spectroscopy using cantilevers with interferometric high-bandwidth force sensors. Appl Phys Lett 100(5):053109CrossRef
19.
go back to reference Sarioglu AF, Solgaard O (2011) Modeling, design, and analysis of interferometric cantilevers for time-resolved force measurements in tapping-mode atomic force microscopy. J Appl Phys 109(6):064316CrossRef Sarioglu AF, Solgaard O (2011) Modeling, design, and analysis of interferometric cantilevers for time-resolved force measurements in tapping-mode atomic force microscopy. J Appl Phys 109(6):064316CrossRef
20.
go back to reference Hillenbrand R, Stark M, Guckenberger R (2000) Higher-harmonics generation in tapping-mode atomic-force microscopy: insights into the tip-sample interaction. Appl Phys Lett 76(23):3478–3480CrossRef Hillenbrand R, Stark M, Guckenberger R (2000) Higher-harmonics generation in tapping-mode atomic-force microscopy: insights into the tip-sample interaction. Appl Phys Lett 76(23):3478–3480CrossRef
21.
go back to reference Stark RW, Hecki WM (2003) Higher harmonics imaging in tapping-mode atomic-force microscopy. Rev Sci Instrum 74(12):5111CrossRef Stark RW, Hecki WM (2003) Higher harmonics imaging in tapping-mode atomic-force microscopy. Rev Sci Instrum 74(12):5111CrossRef
22.
go back to reference Chen GY, Warmack RJ, Oden PI, Thundat T (1996) Transient response of tapping scanning force microscopy in liquids. J Vac Sci Technol B 14(2):1313–1317CrossRef Chen GY, Warmack RJ, Oden PI, Thundat T (1996) Transient response of tapping scanning force microscopy in liquids. J Vac Sci Technol B 14(2):1313–1317CrossRef
23.
go back to reference Legleiter J, Kowalewski T (2005) Insights into fluid tapping-mode atomic force microscopy provided by numerical simulations. Appl Phys Lett 87:163120/1–163120/3CrossRef Legleiter J, Kowalewski T (2005) Insights into fluid tapping-mode atomic force microscopy provided by numerical simulations. Appl Phys Lett 87:163120/1–163120/3CrossRef
24.
go back to reference Putman CAJ, Vanderwerf KO, Degrooth BG, Vanhulst NF et al (1994) Tapping mode atomic-force microscopy in liquid. Appl Phys Lett 64(18):2454–2456CrossRef Putman CAJ, Vanderwerf KO, Degrooth BG, Vanhulst NF et al (1994) Tapping mode atomic-force microscopy in liquid. Appl Phys Lett 64(18):2454–2456CrossRef
25.
go back to reference Burke KA, Yates EA, Legleiter J (2013) Amyloid-forming proteins alter the local mechanical properties of lipid membranes. Biochemistry 52(5):808–817CrossRef Burke KA, Yates EA, Legleiter J (2013) Amyloid-forming proteins alter the local mechanical properties of lipid membranes. Biochemistry 52(5):808–817CrossRef
26.
go back to reference Kumar B, Pifer PM, Giovengo A, Legleiter J (2010) The effect of set point ratio and surface Young’s modulus on maximum tapping forces in fluid tapping mode atomic force microscopy. J Appl Phys 107 Kumar B, Pifer PM, Giovengo A, Legleiter J (2010) The effect of set point ratio and surface Young’s modulus on maximum tapping forces in fluid tapping mode atomic force microscopy. J Appl Phys 107
27.
go back to reference Shamitko-Klingensmith N, Molchanoff KM, Burke KA, Magnone GJ et al (2012) Mapping the mechanical properties of cholesterol-containing supported lipid bilayers with nanoscale spatial resolution. Langmuir 28:13411–13422CrossRef Shamitko-Klingensmith N, Molchanoff KM, Burke KA, Magnone GJ et al (2012) Mapping the mechanical properties of cholesterol-containing supported lipid bilayers with nanoscale spatial resolution. Langmuir 28:13411–13422CrossRef
28.
go back to reference Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47(6–8):197–301CrossRef Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47(6–8):197–301CrossRef
29.
go back to reference Tamayo J (1999) Energy dissipation in tapping-mode scanning force microscopy with low quality factors. Appl Phys Lett 75(22):3569–3571CrossRef Tamayo J (1999) Energy dissipation in tapping-mode scanning force microscopy with low quality factors. Appl Phys Lett 75(22):3569–3571CrossRef
30.
go back to reference Basak S, Raman A (2007) Dynamics of tapping mode atomic force microscopy in liquids: theory and experiments. Appl Phys Lett 91(6):064107-3CrossRef Basak S, Raman A (2007) Dynamics of tapping mode atomic force microscopy in liquids: theory and experiments. Appl Phys Lett 91(6):064107-3CrossRef
31.
go back to reference Xu X, Carrasco C, Jose de Pablo P, Gomez-Herrero J et al (2008) Unmasking imaging forces on soft biological samples in liquids when using dynamic atomic force microscopy: a case study on viral capsids. Biophys J 95(5):2520–2528CrossRef Xu X, Carrasco C, Jose de Pablo P, Gomez-Herrero J et al (2008) Unmasking imaging forces on soft biological samples in liquids when using dynamic atomic force microscopy: a case study on viral capsids. Biophys J 95(5):2520–2528CrossRef
32.
go back to reference Israelachvili J (1992) Intermolecular & surface forces. Academic, London Israelachvili J (1992) Intermolecular & surface forces. Academic, London
33.
go back to reference Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interf Sci 53(2):314–326CrossRef Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interf Sci 53(2):314–326CrossRef
34.
go back to reference Kowalewski T, Legleiter J (2006) Imaging stability and average tip-sample force in tapping mode atomic force microscopy. J Appl Phys 99:064903/1–064903/5CrossRef Kowalewski T, Legleiter J (2006) Imaging stability and average tip-sample force in tapping mode atomic force microscopy. J Appl Phys 99:064903/1–064903/5CrossRef
35.
go back to reference Guzman HV, Perrino AP, Garcia R (2013) Peak forces in high-resolution imaging of soft matter in liquid. ACS Nano 7(4):3198–3204CrossRef Guzman HV, Perrino AP, Garcia R (2013) Peak forces in high-resolution imaging of soft matter in liquid. ACS Nano 7(4):3198–3204CrossRef
36.
go back to reference Legleiter J (2009) The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment. Nanotechnology 20:245703/1–245703/10CrossRef Legleiter J (2009) The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment. Nanotechnology 20:245703/1–245703/10CrossRef
37.
go back to reference Legleiter J, Fryer JD, Holtzman DM, Kowalewski T (2011) The modulating effect of mechanical changes in lipid bilayers caused by apoE-containing lipoproteins on Aβ induced membrane disruption. ACS Chem Neurosci 2:588–599CrossRef Legleiter J, Fryer JD, Holtzman DM, Kowalewski T (2011) The modulating effect of mechanical changes in lipid bilayers caused by apoE-containing lipoproteins on Aβ induced membrane disruption. ACS Chem Neurosci 2:588–599CrossRef
38.
go back to reference Yates EA, Owens SL, Lynch MF, Cucco EM et al (2013) Specific domains of abeta facilitate aggregation on and association with lipid bilayers. J Mol Biol 425(11):1915–1933CrossRef Yates EA, Owens SL, Lynch MF, Cucco EM et al (2013) Specific domains of abeta facilitate aggregation on and association with lipid bilayers. J Mol Biol 425(11):1915–1933CrossRef
39.
go back to reference Burke KA, Kauffman KJ, Umbaugh CS, Frey SL et al (2013) The interaction of polyglutamine peptides with lipid membranes is regulated by flanking sequences associated with huntingtin. J Biol Chem 288(21):14993–15005CrossRef Burke KA, Kauffman KJ, Umbaugh CS, Frey SL et al (2013) The interaction of polyglutamine peptides with lipid membranes is regulated by flanking sequences associated with huntingtin. J Biol Chem 288(21):14993–15005CrossRef
40.
go back to reference Burke KA, Hensal KM, Umbaugh CS, Chaibva M et al (2013) Huntingtin disrupts lipid bilayers in a polyQ-length dependent manner. BBA Biomembr 1828(8):1953–1961CrossRef Burke KA, Hensal KM, Umbaugh CS, Chaibva M et al (2013) Huntingtin disrupts lipid bilayers in a polyQ-length dependent manner. BBA Biomembr 1828(8):1953–1961CrossRef
Metadata
Title
Recovering Time-Resolved Imaging Forces in Solution by Scanning Probe Acceleration Microscopy: Theory and Application
Authors
Maxmore Chaibva
Nicole Shamitko-Klingensmith
Justin Legleiter
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-44551-8_2

Premium Partners